Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giải phương trình sau: √3sin6x-2sin4x=cos6x

Toán Lớp 11: Giải phương trình sau: √3sin6x-2sin4x=cos6x

Comments ( 1 )

  1. Giải đáp:
    \[\left[ \begin{array}{l}
    x = \dfrac{\pi }{{12}} + k\pi \\
    x = \dfrac{{7\pi }}{{60}} + \dfrac{{k\pi }}{5}
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\]
    Lời giải và giải thích chi tiết:
     Ta có:
    \(\begin{array}{l}
    \sqrt 3 \sin 6x – 2\sin 4x = \cos 6x\\
     \Leftrightarrow \sqrt 3 \sin 6x – \cos 6x = 2\sin 4x\\
     \Leftrightarrow \dfrac{{\sqrt 3 }}{2}\sin 6x – \dfrac{1}{2}\cos 6x = \sin 4x\\
     \Leftrightarrow \sin 6x.\cos \dfrac{\pi }{6} – \cos 6x.\sin \dfrac{\pi }{6} = \sin 4x\\
     \Leftrightarrow \sin \left( {6x – \dfrac{\pi }{6}} \right) = \sin 4x\\
     \Leftrightarrow \left[ \begin{array}{l}
    6x – \dfrac{\pi }{6} = 4x + k2\pi \\
    6x – \dfrac{\pi }{6} = \pi  – 4x + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    6x – 4x = \dfrac{\pi }{6} + k2\pi \\
    6x + 4x = \pi  + \dfrac{\pi }{6} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x = \dfrac{\pi }{6} + k2\pi \\
    10x = \dfrac{{7\pi }}{6} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{{12}} + k\pi \\
    x = \dfrac{{7\pi }}{{60}} + \dfrac{{k\pi }}{5}
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )