Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giải phương trình: $\dfrac{1+sinx+cos2x)sin(x+\dfrac{π}{4})}{1+tanx}=\dfrac{1}{\sqrt{2}}cos x$

Toán Lớp 11: Giải phương trình:
$\dfrac{1+sinx+cos2x)sin(x+\dfrac{π}{4})}{1+tanx}=\dfrac{1}{\sqrt{2}}cos x$

Comments ( 2 )

  1. $\begin{array}{l}
    \dfrac{{\left( {1 + \sin x + \cos 2x} \right)\sin \left( {x + \dfrac{\pi }{4}} \right)}}{{1 + \tan x}} = \dfrac{1}{{\sqrt 2 }}\cos x\\
    \text{ĐK}:\left\{ \begin{array}{l}
    \cos x \ne 0\\
    1 + \tan x \ne 0
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x \ne \dfrac{\pi }{2} + k\pi \\
    x \ne  – \dfrac{\pi }{4} + k\pi 
    \end{array} \right.\\
     \Leftrightarrow \dfrac{{\left( {1 + \sin x + \cos 2x} \right)\dfrac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right)}}{{1 + \tan x}} = \dfrac{1}{{\sqrt 2 }}\cos x\\
     \Leftrightarrow \dfrac{{\left( {1 + \sin x + \cos 2x} \right)\left( {\sin x + \cos x} \right)}}{{1 + \tan x}} = \cos x\\
     \Leftrightarrow \left( {1 + \sin x + \cos 2x} \right)\left( {\sin x + \cos x} \right) = \cos x\left( {1 + \tan x} \right)\\
     \Leftrightarrow \left( {1 + \sin x + \cos 2x} \right)\left( {\sin x + \cos x} \right) = \cos x + \sin x\\
     \Leftrightarrow \left( {\sin x + \cos x} \right)\left( {\sin x + \cos 2x + 1 – 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \sin x + \cos x = 0\\
    \sin x + \cos 2x = 0
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right) = 0\\
     – 2{\sin ^2}x + \sin x + 1 = 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    \sin \left( {x + \dfrac{\pi }{4}} \right) = 0\\
    \sin x = 1\\
    \sin x =  – \dfrac{1}{2}
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x =  – \dfrac{\pi }{4} + k\pi (L)\\
    x = \dfrac{\pi }{2} + k2\pi (L)\\
    x =  – \dfrac{\pi }{6} + k2\pi ™\\
    x = \dfrac{{7\pi }}{6} + k2\pi ™
    \end{array} \right.\\
     \Rightarrow S = \left\{ { – \dfrac{\pi }{6} + k2\pi ;\dfrac{{7\pi }}{6} + k2\pi ,k \in Z} \right\}
    \end{array}$

     

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Lyla Anh