Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: cot x-tan x=(cos x-sin x)/(sin x. cos x)

Toán Lớp 11: cot x-tan x=(cos x-sin x)/(sin x. cos x)

Comments ( 1 )

  1. Giải đáp:
    $x = \dfrac{\pi}{4} + k\pi\quad (k\in\Bbb Z)$
    Lời giải và giải thích chi tiết:
    $\quad \cot x – \tan x = \dfrac{\cos x -\sin x}{\sin x\cos x}\qquad (*)$
    $ĐK: \begin{cases}\cos x\ne 0\\\sin x \ne 0\end{cases}\Leftrightarrow x \ne\dfrac{n\pi}{2}$
    $(*)\Leftrightarrow \dfrac{\cos x}{\sin x} -\dfrac{\sin x}{\cos x}= \dfrac{\cos x -\sin x}{\sin x\cos x}$
    $\Leftrightarrow \dfrac{\cos^2x -\sin^2x}{\sin x\cos x}=\dfrac{\cos x -\sin x}{\sin x\cos x}$
    $\Leftrightarrow (\cos x -\sin x)(\cos x +\sin x)= \cos x – \sin x$
    $\Leftrightarrow (\cos x -\sin x)(\cos x +\sin x -1)= 0$
    $\Leftrightarrow \left[\begin{array}{l}\cos x -\sin x = 0\\\cos x +\sin x = 1\end{array}\right.$
    $\Leftrightarrow \left[\begin{array}{l}\cos\left(x +\dfrac{\pi}{4}\right)= 0\\\sqrt2\cos\left(x -\dfrac{\pi}{4}\right)= 1\end{array}\right.$
    $\Leftrightarrow \left[\begin{array}{l}\cos\left(x +\dfrac{\pi}{4}\right)= 0\\\cos\left(x -\dfrac{\pi}{4}\right)= \dfrac{\sqrt2}{2}\end{array}\right.$
    $\Leftrightarrow \left[\begin{array}{l}x +\dfrac{\pi}{4}=\dfrac{\pi}{2} + k\pi\\x -\dfrac{\pi}{4} = \dfrac{\pi}{4} + k2\pi\\x -\dfrac{\pi}{4} = -\dfrac{\pi}{4} + k2\pi\end{array}\right.$
    $\Leftrightarrow \left[\begin{array}{l}x =\dfrac{\pi}{4} + k\pi\\x = \dfrac{\pi}{2} + k2\pi\\x = k2\pi\end{array}\right.\quad (k\in\Bbb Z)$
    Kết hợp ĐKXĐ, ta được:
    $x = \dfrac{\pi}{4} + k\pi\quad (k\in\Bbb Z)$
    Vậy phương trình có họ nghiệm là $x =\dfrac{\pi}{4} + k\pi$ với $k\in\Bbb Z$

Leave a reply

222-9+11+12:2*14+14 = ? ( )