Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: B1. Tính giá trị lượng giác của các góc ∝ nếu: 1. Cos∝ = -1/4, π < ∝ < 3π/2 2. Tan∝ = 3/5, π/2 < ∝ < π

Toán Lớp 11: B1. Tính giá trị lượng giác của các góc ∝ nếu:
1. Cos∝ = -1/4, π < ∝ < 3π/2 2. Tan∝ = 3/5, π/2 < ∝ < π

Comments ( 2 )

  1. 1, cos\alpha=-1/4; \pi<\alpha<(3\pi)/2
    Có: sin^2\alpha+cos^2\alpha=1
    <=> sin^2\alpha=1-cos^2\alpha=1-(-1/4)^2=15/16
    => sin\alpha=-\sqrt{15}/4
    (do \pi<\alpha<(3\pi)/2 => sin\alpha<0)
    Khi đó $tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{-\sqrt{15}}{4}}{\dfrac{-1}{4}}=\sqrt{15}$
    -> cot \alpha=1/(tan\alpha)=1/\sqrt{15}
    Vậy sin\alpha=-\sqrt{15}/4; tan\alpha=\sqrt{15};cot\alpha=1/\sqrt{15}
    2, tan\alpha=3/5; \pi/2<\alpha<\pi
    => cot\alpha=1/(tan\alpha)=5/3
    Lại có: sin^2\alpha=1/(1+tan^2\alpha)=$\dfrac{1}{1+(\dfrac{3}{5})^2}=\dfrac{1}{1+\dfrac{9}{25}}=\dfrac{1}{\dfrac{34}{25}}=\dfrac{25}{34}$
    => sin\alpha=(5\sqrt{34})/34
    (do \pi/2<\alpha<\pi=> sin\alpha>0)
    Khi đó cos^2\alpha=1-sin^2\alpha=1-25/34=9/34
    => cos\alpha=(-3\sqrt{34})/34
    (do \pi/2<\alpha<\pi=>cos\alpha<0)
    Vậy sin\alpha=(5\sqrt{34})/34; cos\alpha=(-3\sqrt{34})/34; cot\alpha=5/3
     

  2. Giải đáp:
     
    Lời giải và giải thích chi tiết:
     a) cos\ \alpha=-1/4
    Ta có: sin^2 \alpha+cos^2 \alpha=1
    ⇔ sin^2 \alpha=1-cos^2 \alpha
    ⇔ sin^2 \alpha=\frac{15}{16}
    ⇒ sin\ \alpha=|\frac{\sqrt{15}}{4}|
    Vì \alpha \in (\pi;\frac{3\pi}{2})
    ⇒ sin\ \alpha < 0
    sin\ \alpha=-\frac{\sqrt{15}}{4}
    tan\ \alpha=\frac{sin\ \alpha}{cos\ \alpha}=\frac{-\sqrt{15}}{4}:(-1/4)=\sqrt{15}
    cot\ \alpha=\frac{cos\ \alpha}{sin\ \alpha}=-1/4:(\frac{-\sqrt{15}}{4})=\frac{\sqrt{15}}{15}
    b) tan\ \alpha=3/5
    Ta có: 1+tan^2 \alpha=\frac{1}{cos^2 \alpha}
    ⇔ 1+9/25=\frac{1}{cos^2 \alpha}
    ⇔ cos^2\ \alpha=25/34
    ⇒ cos\ \alpha=|\frac{5\sqrt{34}}{34}|
    Vì \alpha \in (\frac{\pi}{2};\pi)
    ⇒ sin\ \alpha > 0,cos\ \alpha<0
    cos\ \alpha=-\frac{5\sqrt{34}}{34}
    ⇒ sin\ \alpha=\sqrt{1-cos^2 \alpha}=\frac{3\sqrt{34}}{34}
    cot\ \alpha=\frac{cos\ \alpha}{sin\ \alpha}=-\frac{5\sqrt{34}}{34}:\frac{3\sqrt{34}}{34}=\frac{-5}{3}

Leave a reply

222-9+11+12:2*14+14 = ? ( )