Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 10: Trong mặt phẳng tọa độ Oxy, cho ba điểm A(2, 1), B(3, −1) và C(5, 0). Tính số đo góc BAC

Toán Lớp 10: Trong mặt phẳng tọa độ Oxy, cho ba điểm A(2, 1), B(3, −1) và C(5, 0). Tính số đo góc BAC

Comments ( 2 )

  1. Giải đáp:
    \(\widehat{BAC}=45^\circ\)
    Lời giải và giải thích chi tiết:
    \(\widehat{BAC}=\left(\overrightarrow{AB},\overrightarrow{AC}\right)\)
    Ta có: \(\overrightarrow{AB}=(1;-2);\overrightarrow{AC}=(3;-1)\)
    \(\cos\left(\overrightarrow{AB};\overrightarrow{AC}\right)=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=\dfrac{1.3+(-2).(-1)}{\sqrt{1^2+(-2)^2}.\sqrt{3^2+(-1)^2}}=\dfrac{\sqrt2}{2}\\\Rightarrow\widehat{BAC}=45^\circ \)

  2. Giải đáp:
    Góc hat(BAC) tương ứng với (vec{AB};vec{AC})
    Ta có : vec{AB}=(1;-2)  ,vec{AC}=(3;-1)
    vec{AB}.vec{AC}=5
    |vec{AB}|=sqrt{5} , |vec{AC}|=sqrt{10}
    |vec{AB}|.|vec{AC}|=5sqrt{2}
    ⇒cos(vec{AB};vec{AC})=frac{vec{AB}.vec{AC}}{|vec{AB}|.|vec{AC}|}=frac{5}{5sqrt{2}}=frac{sqrt{2}}{2}
    ⇒hat(BAC)=45^0
    $\text{Shield Knight}$
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Dương