Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 10: 1/ Cho tan α =3 ( π < α < 3π/2 ).Tinh cosα 2/ Rút gọn biểu thức sin(π/2 - α) + 2cos(-a)-4cos(α+π) 3/ Kết quả đơn giản của biểu thức (s

Toán Lớp 10: 1/ Cho tan α =3 ( π < α < 3π/2 ).Tinh cosα 2/ Rút gọn biểu thức sin(π/2 - α) + 2cos(-a)-4cos(α+π) 3/ Kết quả đơn giản của biểu thức (sinα + tanα/cosα +1) mũ 2 4/ Cho sin x = 3/5 và π/2 < x <π. Tính cot x

Comments ( 2 )

  1. Giải đáp:
    $\begin{array}{l}
    1)\pi  < a < \dfrac{{3\pi }}{2}\\
     \Leftrightarrow \cos a < 0\\
    Do:\dfrac{1}{{{{\cos }^2}a}} = {\tan ^2}a + 1\\
     \Leftrightarrow \dfrac{1}{{{{\cos }^2}a}} = {3^2} + 1 = 10\\
     \Leftrightarrow {\cos ^2}a = \dfrac{1}{{10}}\\
     \Leftrightarrow \cos a =  – \dfrac{{\sqrt {10} }}{{10}}\\
    Vậy\,\cos a = \dfrac{{ – \sqrt {10} }}{{10}}\\
    2)\sin \left( {\dfrac{\pi }{2} – a} \right) + 2\cos \left( { – a} \right) – 4\cos \left( {a + \pi } \right)\\
     = \cos a + 2\cos a + 4\cos a\\
     = 7\cos a\\
    3)\\
    {\left( {\dfrac{{\sin a + \tan a}}{{\cos a + 1}}} \right)^2}\\
     = {\left( {\dfrac{{\sin a + \dfrac{{\sin a}}{{\cos a}}}}{{\cos a + 1}}} \right)^2}\\
     = {\left( {\sin a.\dfrac{{\dfrac{{\cos a + 1}}{{\cos a}}}}{{\cos a + 1}}} \right)^2}\\
     = {\left( {\sin a.\dfrac{1}{{\cos a}}} \right)^2}\\
     = {\tan ^2}a\\
    4)\sin x = \dfrac{3}{5}\\
    \dfrac{\pi }{2} < x < \pi  \Leftrightarrow \cos x < 0\\
     \Leftrightarrow \cot x < 0\\
    Do:\dfrac{1}{{{{\sin }^2}a}} = {\cot ^2}a + 1\\
     \Leftrightarrow {\cot ^2}a = \dfrac{{25}}{9} – 1 = \dfrac{{16}}{9}\\
     \Leftrightarrow \cot a =  – \dfrac{4}{3}\\
    Vậy\,\cot a = \dfrac{{ – 4}}{3}
    \end{array}$

  2. ~rai~
    \(1.\text{Ta có:}\dfrac{1}{\cos^2\alpha}=1+\tan^2\alpha\\\Leftrightarrow \dfrac{1}{\cos^2\alpha}=1+3^2\\\Leftrightarrow \dfrac{1}{\cos^2\alpha}=10\\\Leftrightarrow \cos^2\alpha=\dfrac{1}{10}\\\Leftrightarrow \cos\alpha=-\dfrac{\sqrt{10}}{10}.\quad(\text{vì }\pi<\alpha<\dfrac{3\pi}{2})\\2.\sin\left(\dfrac{\pi}{2}-\alpha\right)+2\cos(-\alpha)-4\cos(\alpha+\pi)\\=\cos\alpha+2\cos\alpha+4\cos\alpha\\=7\cos\alpha.\\\text{Giải thích:}\sin\left(\dfrac{\pi}{2}-\alpha\right)=\cos\alpha;\cos(-\alpha)=\cos\alpha;\cos(\alpha+\pi)=-\cos\alpha.\\3.\left(\dfrac{\sin\alpha+\tan\alpha}{\cos\alpha+1}\right)^2\\=\left(\dfrac{\sin\alpha+\dfrac{\sin\alpha}{\cos\alpha}}{\cos\alpha+1}\right)^2\\=\left(\dfrac{\dfrac{\sin\alpha\cos\alpha+\sin\alpha}{\cos\alpha}}{\cos\alpha+1}\right)^2\\=\left[\dfrac{\sin\alpha(\cos\alpha+1)}{\cos\alpha}.\dfrac{1}{\cos\alpha+1}\right]^2\\=\left(\dfrac{\sin\alpha}{\cos\alpha}\right)^2\\=\tan^2\alpha.\\4.\text{Ta có:}\dfrac{1}{\sin^2x}=1+\cot^2x\\\Leftrightarrow \dfrac{1}{\left(\dfrac{3}{5}\right)^2}=1+\cot^2x\\\Leftrightarrow \dfrac{25}{9}=1+\cot^2x\\\Leftrightarrow \cot^2x=\dfrac{16}{9}\\\Leftrightarrow \cot=-\dfrac{4}{3}.\quad\text{(vì }\dfrac{\pi}{2}<x<\pi)\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )