Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: giải phương trình lượng giác sau: a)Sin^22x+cos2x=0 b) cot2x-tan2x+1=0 c) sin2x+2cosx=0

Toán Lớp 11: giải phương trình lượng giác sau:
a)Sin^22x+cos2x=0
b) cot2x-tan2x+1=0
c) sin2x+2cosx=0

Comments ( 1 )

  1. Giải đáp:
    \(\begin{array}{l}
    a,\\
    \left[ \begin{array}{l}
    x = \dfrac{1}{2}\arccos \dfrac{{1 – \sqrt 5 }}{2} + k\pi \\
    x =  – \dfrac{1}{2}\arccos \dfrac{{1 – \sqrt 5 }}{2} + k\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
    b,\\
    \left[ \begin{array}{l}
    x = \dfrac{1}{2}\arctan \dfrac{{1 – \sqrt 5 }}{2} + k\pi \\
    x = \dfrac{1}{2}\arctan \dfrac{{1 + \sqrt 5 }}{2} + k\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
    c,\\
    x = \dfrac{\pi }{2} + k\pi \,\,\,\,\left( {k \in Z} \right)
    \end{array}\)
    Lời giải và giải thích chi tiết:
     Ta có:
    \(\begin{array}{l}
    a,\\
    {\sin ^2}2x + \cos 2x = 0\\
     \Leftrightarrow \left( {1 – {{\cos }^2}2x} \right) + \cos 2x = 0\\
     \Leftrightarrow  – {\cos ^2}2x + \cos 2x + 1 = 0\\
     \Leftrightarrow {\cos ^2}2x – \cos 2x – 1 = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \cos 2x = \dfrac{{1 + \sqrt 5 }}{2}\\
    \cos 2x = \dfrac{{1 – \sqrt 5 }}{2}
    \end{array} \right.\\
     – 1 \le \cos 2x \le 1 \Rightarrow \cos 2x = \dfrac{{1 – \sqrt 5 }}{2}\\
    \cos 2x = \dfrac{{1 – \sqrt 5 }}{2}\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x = \arccos \dfrac{{1 – \sqrt 5 }}{2} + k2\pi \\
    2x =  – \arccos \dfrac{{1 – \sqrt 5 }}{2} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{1}{2}\arccos \dfrac{{1 – \sqrt 5 }}{2} + k\pi \\
    x =  – \dfrac{1}{2}\arccos \dfrac{{1 – \sqrt 5 }}{2} + k\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
    b,\\
    DKXD:\,\,\,\left\{ \begin{array}{l}
    \sin 2x \ne 0\\
    \cos 2x \ne 0
    \end{array} \right. \Leftrightarrow 2x \ne \dfrac{{k\pi }}{2} \Leftrightarrow x \ne \dfrac{{k\pi }}{4}\,\,\,\,\left( {k \in Z} \right)\\
    \cot 2x – \tan 2x + 1 = 0\\
     \Leftrightarrow \dfrac{1}{{\tan 2x}} – \tan 2x + 1 = 0\\
     \Leftrightarrow \dfrac{{1 – {{\tan }^2}2x + \tan 2x}}{{\tan 2x}} = 0\\
     \Leftrightarrow 1 – {\tan ^2}2x + \tan 2x = 0\\
     \Leftrightarrow {\tan ^2}2x – \tan 2x – 1 = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \tan 2x = \dfrac{{1 – \sqrt 5 }}{2}\\
    \tan 2x = \dfrac{{1 + \sqrt 5 }}{2}
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x = \arctan \dfrac{{1 – \sqrt 5 }}{2} + k\pi \\
    2x = \arctan \dfrac{{1 + \sqrt 5 }}{2} + k\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{1}{2}\arctan \dfrac{{1 – \sqrt 5 }}{2} + k\pi \\
    x = \dfrac{1}{2}\arctan \dfrac{{1 + \sqrt 5 }}{2} + k\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
    c,\\
    \sin 2x + 2\cos x = 0\\
     \Leftrightarrow 2\sin x.\cos x + 2\cos x = 0\\
     \Leftrightarrow 2\cos x.\left( {\sin x + 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \cos x = 0\\
    \sin x + 1 = 0
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    \cos x = 0\\
    \sin x =  – 1
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{2} + k\pi \\
    x =  – \dfrac{\pi }{2} + k2\pi 
    \end{array} \right. \Leftrightarrow x = \dfrac{\pi }{2} + k\pi \,\,\,\,\left( {k \in Z} \right)
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )