Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: 6cos² 2x+ 5sin2x-7=0 Sin²x+2sinx+1=0 Cos2x+sinx+1=0

Toán Lớp 11: 6cos² 2x+ 5sin2x-7=0
Sin²x+2sinx+1=0
Cos2x+sinx+1=0

Comments ( 1 )

  1. Giải đáp:
    \(\begin{array}{l}
    1,\\
    \left[ \begin{array}{l}
    x = \dfrac{\pi }{{12}} + k\pi \\
    x = \dfrac{{5\pi }}{{12}} + k\pi \\
    x = \dfrac{1}{2}\arcsin \dfrac{1}{3} + k\pi \\
    x = \dfrac{\pi }{2} – \dfrac{1}{2}\arcsin \dfrac{1}{3} + k\pi 
    \end{array} \right.\,\,\left( {k \in Z} \right)\\
    2,\\
    x =  – \dfrac{\pi }{2} + k2\pi \,\,\,\left( {k \in Z} \right)\\
    3,\\
    \left[ \begin{array}{l}
    x = \arcsin \dfrac{{1 – \sqrt {17} }}{4} + k2\pi \\
    x = \pi  – \arcsin \dfrac{{1 – \sqrt {17} }}{4} + k2\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)
    \end{array}\)
    Lời giải và giải thích chi tiết:
     Ta có:
    \(\begin{array}{l}
    1,\\
    6{\cos ^2}2x + 5\sin 2x – 7 = 0\\
     \Leftrightarrow 6.\left( {1 – {{\sin }^2}2x} \right) + 5\sin 2x – 7 = 0\\
     \Leftrightarrow 6 – 6{\sin ^2}2x + 5\sin 2x – 7 = 0\\
     \Leftrightarrow  – 6{\sin ^2}2x + 5\sin 2x – 1 = 0\\
     \Leftrightarrow 6{\sin ^2}2x – 5\sin 2x + 1 = 0\\
     \Leftrightarrow \left( {2\sin 2x – 1} \right)\left( {3\sin 2x – 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    2\sin 2x – 1 = 0\\
    3\sin 2x – 1 = 0
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    \sin 2x = \dfrac{1}{2}\\
    \sin 2x = \dfrac{1}{3}
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x = \dfrac{\pi }{6} + k2\pi \\
    2x = \dfrac{{5\pi }}{6} + k2\pi \\
    2x = \arcsin \dfrac{1}{3} + k2\pi \\
    2x = \pi  – \arcsin \dfrac{1}{3} + k2\pi 
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{{12}} + k\pi \\
    x = \dfrac{{5\pi }}{{12}} + k\pi \\
    x = \dfrac{1}{2}\arcsin \dfrac{1}{3} + k\pi \\
    x = \dfrac{\pi }{2} – \dfrac{1}{2}\arcsin \dfrac{1}{3} + k\pi 
    \end{array} \right.\,\,\left( {k \in Z} \right)\\
    2,\\
    {\sin ^2}x + 2\sin x + 1 = 0\\
     \Leftrightarrow {\sin ^2}x + 2.\sin x.1 + {1^2} = 0\\
     \Leftrightarrow {\left( {\sin x + 1} \right)^2} = 0\\
     \Leftrightarrow \sin x + 1 = 0\\
     \Leftrightarrow \sin x =  – 1\\
     \Leftrightarrow x =  – \dfrac{\pi }{2} + k2\pi \,\,\,\left( {k \in Z} \right)\\
    3,\\
    \cos 2x + \sin x + 1 = 0\\
     \Leftrightarrow 1 – 2{\sin ^2}x + \sin x + 1 = 0\\
     \Leftrightarrow  – 2{\sin ^2}x + \sin x + 2 = 0\\
     \Leftrightarrow 2{\sin ^2}x – \sin x – 2 = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \sin x = \dfrac{{1 + \sqrt {17} }}{4}\\
    \sin x = \dfrac{{1 – \sqrt {17} }}{4}
    \end{array} \right.\\
     – 1 \le \sin x \le 1 \Rightarrow \sin x = \dfrac{{1 – \sqrt {17} }}{4}\\
    \sin x = \dfrac{{1 – \sqrt {17} }}{4}\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \arcsin \dfrac{{1 – \sqrt {17} }}{4} + k2\pi \\
    x = \pi  – \arcsin \dfrac{{1 – \sqrt {17} }}{4} + k2\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )