Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Xin mời các cao nhân xơi cho a,b,c khác 0 thỏa mãn:$a^{3}+b^{3}+c^{3}=3abc$ Tính F=$(1+\dfrac{a}{b})(1+\dfrac{b}{c})(1+\dfrac{c}{a})

Toán Lớp 8: Xin mời các cao nhân xơi
cho a,b,c khác 0 thỏa mãn:$a^{3}+b^{3}+c^{3}=3abc$
Tính F=$(1+\dfrac{a}{b})(1+\dfrac{b}{c})(1+\dfrac{c}{a})$

Comments ( 2 )

  1. Ta có :
    F = (1+a/b)(1+b/c)(1+c/a)
    => F = ( (a+b)/b)( (c+b)/c)( (c+a)/a)
    => F = ( (a+b)(b+c)(a+c))/(abc)
    Lại có :
    a^3 +b^3 +c^3 = 3abc
    => a^3 +b^3 +c^3 – 3abc =0
    => (a+b)^3 – 3ab(a+b) +c^3 – 3abc =0
    => (a+b)^3 +c^3 – (3ab(a+b) + 3abc) =0 
    => (a+b+c)(a^2 + 2ab +b ^2 + ac + cb +c^2) –  3ab(a+b+c) =0
    => (a+b+c)(a^2 +b^2 +c^2 – ab – ac – bc) =0 
    *** Như vậy a +b+c =0
    => a +b = -c ; a+c = -b ; b+c = =-a
    Khi đó :
    F = (-abc)/(abc) =-1
    *** Như vậy : a^2 +b^2 +c^2 – ab -ac – bc =0
    <=> 2a^2+2b^2 +2c^2 – 2ab – 2ac – 2bc =0
    <=> (a^2 – 2ab +b^2) + (b^2 – 2ac +c^2) + ( c^2 – 2ac +a^2) =0
    <=> (a-b)^2 + (b-c)^2 + (c-a)^2 =0 
    Dấu = xảy ra :
    <=> $\begin{cases} a -b =0 \\ b -c = 0 \\ c -a = 0 \end{cases}$ 
    <=> $\begin{cases} a =b \\ b =c \\ c =a \end{cases}$
    <=> a =b =c 
    Khi đó :
    F = ( (a+b)(b+c)(a+c))/(abc)
    => F = ( (a +a)(a+a)(a+a))/(a . a . a) = (2a . 2a . 2a)/(a^3) = (8a^3)/(a^3) =8 
    Vậy F = 1 hoặc F =8 .

  2. $TH1.$
    Ta có:$(a+b+c)^3$
    $=(a^{2}+ab+ac+ab+b^2+bc+ac+bc+c^2)(a+b+c)$
    $=(a^{2}+b^2+c^2+2ab+2bc+2ac)(a+b+c)$
    $=a^3+a^2b+a^2c+b^2a+b^3+b^2c+c^2a+c^2b+c^3+2a^2b+2b^2a+2abc+2b^2c+2c^2b+2abc+2a^2c+2c^2a+2abc$
    $=a^3+3a^2b+3a^2c+3b^2a+b^3+3b^2c+3c^2a+3c^2b+c^3+6abc$
    $=a^3+b^3+c^3-3abc+3a^2b+3a^2c+3b^2a+3b^2c+3c^2a+3c^2b+9abc$
    $=a^3+b^3+c^3-3abc+(3a^2b+3b^2+3abc)+(3a^2c+3c^2a+3abc)+(3b^2c+3c^2b+3abc)$
    Mà $a^3+b^3+c^3=3abc$ $⇒a^3+b^3+c^3-3abc=0$
    $=(3a^2b+3b^2+3abc)+(3a^2c+3c^2a+3abc)+(3b^2c+3c^2b+3abc)$
    $=3ab(a+b+c)+3ac(a+b+c)+3bc(a+b+c)$
    $=3(ab+ac+bc)(a+b+c)$
    $⇒3(ab+ac+bc)(a+b+c)=(a+b+c)^3$
    $⇒3(ab+ac+bc)=(a+b+c)^2$
    $⇒3ab+3ac+3bc=a^{2}+b^2+c^2+2ab+2bc+2ac$
    $⇒ab+ac+bc=a^{2}+b^2+c^2$
    $⇔ab+ac+bc-a^{2}-b^2-c^2=0$
    $⇔-(-ab-ac-bc+a^{2}+b^2+c^2)=0$
    $⇔-(-2ab-2ac-2bc+2a^{2}+2b^2+2c^2)=0$
    $⇔-[(a^{2}-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]=0$
    $⇔-[(a-b)^2+(a-c)^2+(b-c)^2]=0$
    $⇔$\(\left[ \begin{array}{l}a=b\\a=c\\b=c\end{array} \right.\)
    $⇔a=b=c$
    $F=(1+\dfrac{a}{b})(1+\dfrac{b}{c})(1+\dfrac{c}{a})$
    $F=(1+1)(1+1)(1+1)$
    $F=2^3$
    $F=8$
    $TH2.$
    $a^3+b^3+c^3=3abc$
    $⇒a^3+b^3+c^3-3abc=0$
    $⇒(a+b)^3-3ab(a+b)+c^3-3abc=0$
    $⇒(a+b)^3-(3ab(a+b)-3abc)+c^3=0$
    $⇒(a^{2}+b^2+c^2+2ab+2bc+2ac)(a+b+c)-3ab(a+b+c)=0$
    $⇒(a^{2}+b^2+c^2−ab−ac−bc)(a+b+c)=0$
    $⇒a+b+c=0$
    $⇒a+b=−c;a+c=−b;b+c=−a$
    Mà $F=(1+\dfrac{a}{b})(1+\dfrac{b}{c})(1+\dfrac{c}{a})$
    $⇒F=(\dfrac{a+b}{b})(\dfrac{b+c}{c})(\dfrac{c+a}{a})$
    $⇒F=\dfrac{(a+b)(c+b)(a+c)}{acb}$
    Nên $F=\dfrac{-abc}{abc}=-1$ 
    Vậy $F=-1$ và $8$

Leave a reply

222-9+11+12:2*14+14 = ? ( )