Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: tìm x,y,z thỏa mãn :9x ²+ y ² + 2z ² -18x +4z -6y +20 = 0 giải giúp em với ạ!

Toán Lớp 8: tìm x,y,z thỏa mãn :9x ²+ y ² + 2z ² -18x +4z -6y +20 = 0
giải giúp em với ạ!

Comments ( 2 )

  1. #huy
    9x^2+ y^2+ 2z^2-18x +4z -6y +20 = 0
    <=>(9x^2-2x+1)+y^2-6y+9+2(z^2+2z+1)=0
    <=>(x-1)^2+(y-3)^2+2(z+1)^2=0
    Mà {((x-1)^2>=0 AA x),((y-3)^2>=0 AA y),((z+1)^2>=0 AA z):}
    =>{((x-1)^2=0),((y-3)^2=0),(2(z+1)^2=0):}<=>{(x-1=0),(y-3=0),(z+1=0):}<=>{(x=1),(y=3),(z=1):}
     

  2. $9x^2+ y^2+ 2z^2-18x +4z -6y +20 = 0$
    $⇔(9x^2-18x+9)+(y^2-6y+9)+(z^2 +2z+1)+(z^2 +2z+1) = 0$
    $⇔(3x-3)^2+(y-3)^2+2(z+1)^2= 0$
    $(3x-3)^2$ $\geq$ $0$ $(∀x)$
    $(y-3)^2$ $\geq$ $0$ $(∀y)$
    $2(z+1)^2$ $\geq$ $0$ $(∀z)$
    $⇔$\(\left[ \begin{array}{l}3x-3=0\\y-3=0\\2(z-1)=0\end{array} \right.\)
    $⇔$\(\left[ \begin{array}{l}3x-3=0\\y-3=0\\z+1=0\end{array} \right.\)
    $⇔$\(\left[ \begin{array}{l}x=1\\y=3\\z=-1\end{array} \right.\)
    Vậy để $9x^2+ y^2+ 2z^2-18x +4z -6y +20 = 0$ thì $x=1;y=3;z=-1$

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Ái Linh