Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 12: giải các pt sau: a. sin ²x – cos ² = 0 b. tanx – 3cotx = 1

Toán Lớp 12: giải các pt sau:
a. sin ²x – cos ² = 0
b. tanx – 3cotx = 1

Comments ( 2 )

  1. #andy
    \[\begin{array}{l}
    si{n^2}x – co{s^2}x = 0\\
     \Rightarrow \left( {sinx – cosx} \right)\left( {sinx + cosx} \right) = 0\\
     \Rightarrow \left[ \begin{array}{l}
    sinx – cosx = 0\\
    sinx + cosx = 0
    \end{array} \right. \Rightarrow \left[ \begin{array}{l}
    \sqrt 2 .sin\left( {x – \frac{\pi }{4}} \right){\rm{ = }}0\\
    \sqrt 2 .sin\left( {x{\rm{ }} + {\rm{ }}\frac{\pi }{4}} \right){\rm{ }} = {\rm{ }}0
    \end{array} \right.\\
     \Rightarrow \left[ \begin{array}{l}
    sin\left( {x – \frac{\pi }{4}} \right) = 0\\
    sin\left( {x{\rm{ }} + {\rm{ }}\frac{\pi }{4}} \right){\rm{ }} = {\rm{ }}0
    \end{array} \right. \Rightarrow \left[ \begin{array}{l}
    x{\rm{ }} – {\rm{ }}\frac{\pi }{4}{\rm{ }} = {\rm{ }}k\pi \\
    \;x{\rm{ }} + {\rm{ }}\frac{\pi }{4}{\rm{ }} = {\rm{ }}k\pi 
    \end{array} \right.\\
     \Rightarrow x{\rm{ }} = {\rm{ }}\frac{\pi }{4}{\rm{ }} + {\rm{ }}\frac{{k\pi }}{2}\,k \in {\rm Z}\\

    \end{array}\]

  2. Lời giải và giải thích chi tiết:
    $a.$ $sin^{2}x-cos^{2}x=0$
    $⇔-cos2x=0$
    $⇔cos2x=0$
    $⇔2x=\frac{\pi}{2}+k\pi$
    $⇒x=\frac{\pi}{4}+\frac{k\pi}{2}$ $,k∈Z$
    $b.$ $tanx-3cotx=1$ $,(x≠\frac{k\pi}{2}, k∈Z)$
    $⇔tanx-\frac{3}{tanx}=1$
    $⇔\frac{tan^{2}x-tanx-3}{tanx}=0$
    $⇔tan^{2}x-tanx-3=0$
    $⇔\left[ \begin{array}{l}tanx=\frac{1+\sqrt[]{13}}{12}\\tanx=\frac{1-\sqrt[]{13}}{12}\end{array} \right.$ $⇒\left[ \begin{array}{l}x=arctan(\frac{1+\sqrt[]{13}}{12})+k\pi\\x=arctan(\frac{1-\sqrt[]{13}}{12})+k\pi\end{array}, k∈Z\right.$

Leave a reply

222-9+11+12:2*14+14 = ? ( )