Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 10: Giải hệ phương trình $\begin{cases} x^2-x+\sqrt{x}=xy+\sqrt{y+1}\\2x^3+1=x\sqrt{4x^2+5y-5}+9y \end{cases}$

Toán Lớp 10: Giải hệ phương trình $\begin{cases} x^2-x+\sqrt{x}=xy+\sqrt{y+1}\\2x^3+1=x\sqrt{4x^2+5y-5}+9y \end{cases}$

Comments ( 1 )

  1. Bạn kham khảo
    {(x^2-x+\sqrt{x}=xy+\sqrt{y+1}(1)),(2x^3+1=x\sqrt{4x^2+5y-5}+9y(2)):}(ĐK:{(x>=0),(y>= -1),(4x^2+5y^2-5>=0):})
    Đặt a=\sqrt{x};\sqrt{y+1}=b(a,b>=0)
    Ta có (1) 
    <=>a^4-a^2+a=a^2(b^2-1)+b
    <=>a^4-a^2+a=a^2b^2-a^2+b
    <=>a^4-a^2b^2+a-b=0
    <=>a^2(a^2-b^2)+(a-b)=0
    <=>a^2(a+b)(a-b)+(a-b)=0
    <=>(a-b)[a^2(a+b)+1]=0
    <=>a-b=0(do a,b>=0 nên a^2(a+b)+1>0)
    <=>a=b
    <=>\sqrt{x}=\sqrt{y+1}
    <=>x=y+1
    <=>y=x-1
    Thay vào phương trình (2) ta được:
    2x^3+1=x\sqrt{4x^2+5(x-1)^2-5}+9(x-1)
    <=>2x^3+1=x\sqrt{9x^2-10x}+9(x-1)
    <=>2x^3-9x+10-x.\sqrt{x}.\sqrt{9x-10}=0(do x>=0)
    <=>2(x\sqrt{x})^2-(\sqrt{9x-10})^2-x\sqrt{x}.\sqrt{9x-10}=0
    Nên 9x-10>=0
    <=>(x\sqrt{x}-\sqrt{9x-10})(2x\sqrt{x}+\sqrt{9x-10})=0
    <=>x\sqrt{x}-\sqrt{9x-10}=0(do x>=0)
    <=>x\sqrt{x}=\sqrt{9x-10}
    <=>x^3=9x-10
    <=>x^3-9x+10=0
    <=>(x-2)(x^2+2x-5)=0
    <=>[(x=2),(x^2+2x-5=0):}
    <=>[(x=2),(x=-1+\sqrt{6}(t//m)),(x=-1-\sqrt{6}(L)):}
    x=2=>y=1
    x=-1+\sqrt{6}=>y=-2\sqrt{6}
    S={(2;1),(-1+\sqrt{6},-2+\sqrt{6})}

Leave a reply

222-9+11+12:2*14+14 = ? ( )