Toán Lớp 7: Cho tam giác đều ABC. Trên cạnh BC lấy điểm M và N sao cho BM = MN = NC.
a) CMR: AM < AC
b) CMR: ∠MAN > ∠NAC
c) Chứng minh rằng góc BAM < 20 độ
Leave a reply
About Thanh Tú
Related Posts
Toán Lớp 5: Một khu vườn hình chữ nhật có chiều dài gấp đôi chiều rộng, nếu tăng chiều rộng 10m và giảm chiều dài 10m thì diện tích khu gườn tăng t
Toán Lớp 5: Bài 1.Một xưởng dệt được 732m vải hoa chiếm 91,5% tổng số vải xưởng đó đã dệt. Hỏi xưởng đó đã dệt được bao nhiêu mét vải? (0.5 Points)
Toán Lớp 8: a, 3x^3 – 6x^2 -6x +12 =0 b, 8x^3 -8x^2 – 4x + 1=0
Toán Lớp 5: Số nhỏ nhất trong các số đo khối lượng 1,512kg, 1,5kg, 1kg51dag, 15dag5g là
Toán Lớp 5: Số nhỏ nhất trong các số đo khối lượng 1,512kg, 1,5kg, 1kg51dag, 15dag5g là giúp mik với, gấp lm
Comments ( 1 )
BM=MN=NC=BC3
Xét ΔABM và ΔACN, có:
AB=AC( cạnh trong tam giác đều)
Bˆ=Cˆ(góc trong tam giác đều)
BM=NC(cmt)
Vậy: ΔABM=ΔACN(c−g−c)
AM=AN
BAMˆ=CANˆ
ΔAMN cân tại A
Trên tia đối MA lấy H sao cho MA=MH
Xét ΔABM và ΔHMN có:
AM=MH(theo điều giả sử trên)
AMBˆ=HMNˆ(đối đỉnh)
BM=MN( theo điều chứng minh trên)
Vậy: ΔABM=ΔHMN(c-g-c)
AB=NH(cạnh tương ứng)
BAMˆ=MHNˆ(góc tương ứng)
Trong ΔABM có:
Bˆ=60o và BAMˆ<60o do: Aˆ=60o
Nên: AMBˆ>90o
AB lớn nhất tron tam giác ABC (theo quan hệ giữa góc và cạnh của tam giác)
HN lớn nhất trong tam giác HMN
HN>HM(1)
Ta có:
AN=HM(2)
Từ (1) và (2) HN> AN
NHMˆ>MANˆ (Qh giữa góc và cạnh trong một tam giác)
MANˆ>BAMˆ(=CANˆ)
Giả sử:
MANˆ=BAMˆ=CANˆ=Aˆ2=20o
Mà: MANˆ>BAMˆ(=CANˆ)
Vậy: BAMˆ<20o (đcpcm)