Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: CMR: đa thức (x + 1)^2022 + (x – 1)^2022 chia hết cho đa thưc x^2 + 1

Toán Lớp 8: CMR: đa thức (x + 1)^2022 + (x – 1)^2022 chia hết cho đa thưc x^2 + 1

Comments ( 2 )

  1. ~ gửi bạn ~
    Lời giải và giải thích chi tiết:
    (x + 1)^2022 + (x – 1)^2022
    = [(x + 1)^2]^1011 + [(x – 1)^2]^1011 
    = (x + 1 + 2x)^1011 + (x + 1 – 2x)^1011
    Lưu ý: A^{2n + 1} + B^{2n + 1} chia hết cho A + B ( với A, B là 2 đa thức )
    Do: A^{2n + 1} + B^{2n + 1} = (A + B).(A^{2n} – A^{2n – 1}B + .. – AB^{2n – 1} + B^{2n})
    -> Áp dụng vào bài toán:
    => (x + 1 + 2x)^1011 + (x + 1 – 2x)^1011⋮  (x + 1 + 2x) + (x + 1 – 2x) = 2.(x^2 + 1)
    Vậy: đa thức (x + 1)^2022 + (x – 1)^2022 chia hết cho đa thưc x^2 + 1

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Thanh Tú