Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 12: Tìm TXĐ của hs: `y =\sqrt{log_2 (x²+2) . log_{2-x} 2 -2}`

Toán Lớp 12: Tìm TXĐ của hs:
y =\sqrt{log_2 (x²+2) . log_{2-x} 2 -2}

Comments ( 1 )

  1. Giải đáp:
    \(D = \left[\dfrac12;1\right)\)
    Lời giải và giải thích chi tiết:
    \(\begin{array}{l}
    \quad y = \sqrt{\log_{\displaystyle 2}(x^2 + 2).\log_{\displaystyle{2-x}}2 – 2}\\
    \text{Hàm số xác định khi và chỉ khi}\\
    \quad \begin{cases}0 < 2- x \ne 1\\\log_{\displaystyle 2}(x^2 + 2).\log_{\displaystyle{2-x}}2 – 2\geqslant 0\end{cases}\\
    \Leftrightarrow \begin{cases}x < 2\\x\ne 1\\\log_{\displaystyle 2}(x^2 + 2)\cdot \dfrac{1}{\log_{\displaystyle{2}}(2-x)}-2\geqslant 0\qquad (*)\end{cases}\\
    (*)\Leftrightarrow \dfrac{\log_{\displaystyle 2}(x^2 + 2)}{\log_{\displaystyle{2}}(2-x)} – 2 \geqslant 0\\
    \Leftrightarrow \dfrac{\log_{\displaystyle 2}(x^2 + 2) – 2\log_{\displaystyle{2}}(2-x)}{\log_{\displaystyle{2}}(2-x)}\geqslant 0\\
    \Leftrightarrow \dfrac{\log_{\displaystyle 2}\dfrac{x^2 + 2}{(x-2)^2}}{\log_{\displaystyle{2}}(2-x)}\geqslant 0\\
    \Leftrightarrow \left[\begin{array}{l}\begin{cases}\log_{\displaystyle 2}\dfrac{x^2 + 2}{(x-2)^2} \geqslant 0\\\log_{\displaystyle{2}}(2-x)>0\end{cases}\\\begin{cases}\log_{\displaystyle 2}\dfrac{x^2 + 2}{(x-2)^2} \leqslant 0\\\log_{\displaystyle{2}}(2-x) <0\end{cases}\end{array}\right.\\
    \Leftrightarrow \dfrac12 \leqslant x < 1\\
    \text{Vậy}\ TXD: D = \left[\dfrac12;1\right)
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Thu Ánh