Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: giúp em 5 câu này với e vote cho Ạ 1) 3sin²x – cosx + 1 = 0 2) cos²2x – 4sin2x + 4 = 0 3) sin²2x + ( 1 – √3 )cos2x + √3 – 1 = 0 4) tan

Toán Lớp 11: giúp em 5 câu này với e vote cho Ạ
1) 3sin²x – cosx + 1 = 0
2) cos²2x – 4sin2x + 4 = 0
3) sin²2x + ( 1 – √3 )cos2x + √3 – 1 = 0
4) tan²2x + ( 1 + √3 ) tan2x + √3 = 0
5) cos2x – 3cosx + 2 =0

Comments ( 1 )

  1. Lời giải và giải thích chi tiết:
    Ta có:
    \(\begin{array}{l}
    1,\\
    3{\sin ^2}x – \cos x + 1 = 0\\
     \Leftrightarrow 3.\left( {1 – {{\cos }^2}x} \right) – \cos x + 1 = 0\\
     \Leftrightarrow 3 – 3{\cos ^2}x – \cos x + 1 = 0\\
     \Leftrightarrow  – 3{\cos ^2}x – \cos x + 4 = 0\\
     \Leftrightarrow 3{\cos ^2}x + \cos x – 4 = 0\\
     \Leftrightarrow \left( {3\cos x + 4} \right)\left( {\cos x – 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    3\cos x + 4 = 0\\
    \cos x – 1 = 0
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    \cos x =  – \dfrac{4}{3}\\
    \cos x = 1
    \end{array} \right.\\
     – 1 \le \cos x \le 1 \Rightarrow \cos x = 1 \Leftrightarrow x = k2\pi \,\,\,\,\,\left( {k \in Z} \right)\\
    2,\\
    {\cos ^2}2x – 4\sin 2x + 4 = 0\\
     \Leftrightarrow \left( {1 – {{\sin }^2}2x} \right) – 4\sin 2x + 4 = 0\\
     \Leftrightarrow 1 – {\sin ^2}2x – 4\sin 2x + 4 = 0\\
     \Leftrightarrow  – {\sin ^2}2x – 4\sin 2x + 5 = 0\\
     \Leftrightarrow {\sin ^2}2x + 4\sin 2x – 5 = 0\\
     \Leftrightarrow \left( {\sin 2x – 1} \right)\left( {\sin 2x + 5} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \sin 2x – 1 = 0\\
    \sin 2x + 5 = 0
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    \sin 2x = 1\\
    \sin 2x =  – 5
    \end{array} \right.\\
     – 1 \le \sin 2x \le 1 \Rightarrow \sin 2x = 1\\
     \Leftrightarrow 2x = \dfrac{\pi }{2} + k2\pi \\
     \Leftrightarrow x = \dfrac{\pi }{4} + k\pi \,\,\,\,\,\,\,\,\,\left( {k \in Z} \right)\\
    3,\\
    {\sin ^2}2x + \left( {1 – \sqrt 3 } \right)\cos 2x + \sqrt 3  – 1 = 0\\
     \Leftrightarrow \left( {1 – {{\cos }^2}2x} \right) + \left( {1 – \sqrt 3 } \right)\cos 2x + \sqrt 3  – 1 = 0\\
     \Leftrightarrow 1 – {\cos ^2}2x + \cos 2x – \sqrt 3 \cos 2x + \sqrt 3 -1 = 0\\
     \Leftrightarrow  – {\cos ^2}2x + \cos 2x – \sqrt 3 \cos 2x + \sqrt 3  = 0\\
     \Leftrightarrow \left( {{{\cos }^2}2x – \cos 2x} \right) + \left( {\sqrt 3 \cos 2x – \sqrt 3 } \right) = 0\\
     \Leftrightarrow \cos 2x.\left( {\cos 2x – 1} \right) + \sqrt 3 \left( {\cos 2x – 1} \right) = 0\\
     \Leftrightarrow \left( {\cos 2x – 1} \right)\left( {\cos 2x + \sqrt 3 } \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \cos 2x – 1 = 0\\
    \cos 2x + \sqrt 3  = 0
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    \cos 2x = 1\\
    \cos 2x =  – \sqrt 3 
    \end{array} \right.\\
     – 1 \le \cos 2x \le 1 \Rightarrow \cos 2x = 1\\
     \Leftrightarrow 2x = k2\pi \\
     \Leftrightarrow x = k\pi \,\,\,\,\,\left( {k \in Z} \right)\\
    4,\\
    {\tan ^2}2x + \left( {1 + \sqrt 3 } \right)\tan 2x + \sqrt 3  = 0\\
     \Leftrightarrow {\tan ^2}2x + \tan 2x + \sqrt 3 .\tan 2x + \sqrt 3  = 0\\
     \Leftrightarrow \left( {{{\tan }^2}2x + \tan 2x} \right) + \left( {\sqrt 3 .\tan 2x + \sqrt 3 } \right) = 0\\
     \Leftrightarrow \tan 2x.\left( {\tan 2x + 1} \right) + \sqrt 3 .\left( {\tan 2x + 1} \right) = 0\\
     \Leftrightarrow \left( {\tan 2x + 1} \right)\left( {\tan 2x + \sqrt 3 } \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \tan 2x + 1 = 0\\
    \tan 2x + \sqrt 3  = 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    \tan 2x =  – 1\\
    \tan 2x =  – \sqrt 3 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x =  – \dfrac{\pi }{4} + k\pi \\
    2x =  – \dfrac{\pi }{3} + k\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x =  – \dfrac{\pi }{8} + \dfrac{{k\pi }}{2}\\
    x =  – \dfrac{\pi }{6} + \dfrac{{k\pi }}{2}
    \end{array} \right.\,\,\,\,\,\,\left( {k \in Z} \right)\\
    5,\\
    \cos 2x – 3\cos x + 2 = 0\\
     \Leftrightarrow \left( {2{{\cos }^2}x – 1} \right) – 3\cos x + 2 = 0\\
     \Leftrightarrow 2{\cos ^2}x – 1 – 3\cos x + 2 = 0\\
     \Leftrightarrow 2{\cos ^2}x – 3\cos x + 1 = 0\\
     \Leftrightarrow \left( {\cos x – 1} \right)\left( {2\cos x – 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \cos x – 1 = 0\\
    2\cos x – 1 = 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    \cos x = 1\\
    \cos x = \dfrac{1}{2}
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = k2\pi \\
    x =  \pm \dfrac{\pi }{3} + k2\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )