Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 7: Tìm Min $E=6x^2-12x-12xy+9y^2+6y+2029$

Toán Lớp 7: Tìm Min $E=6x^2-12x-12xy+9y^2+6y+2029$

Comments ( 2 )

  1. E=6x^2-12x-12xy+9y^2+6y+2029
    E=(6x^2-12xy+6y^2)-12x+12y+3y^2-6y+2029
    E=6(x-y)^2-12(x-y)+3(y^2-2y)+2029
    E=6[(x-y)^2-2(x-y)+1]+3(y^2-2.y+1)-6-3+2029
    E=6(x-y-1)^2+3(y-1)^2+2020>=2020
    Dấu = xảy ra khi $\begin{cases}x-y=1\\y=1\end{cases}⇔\begin{cases}x=2\\y=1\end{cases}$
    Vậy E_(min)=2020<=>(x;y)=(2;1)

  2. Giải đáp:
    $\\$
    E = 6x^2 – 12x – 12xy + 9y^2 + 6y + 2029
    -> E = 6x^2 – 12x – 12xy+ 3y^2 + 6y^2 + 12y – 6y  + 6-6 + 3-3 + 2029
    -> E = [(6x^2 – 12xy + 6y^2) – 12x + 12y + 6] + [3y^2 -6y +3] + (-6-3+2029)
    -> E = [6 (x^2 – 2xy + y^2) – (12x – 12y) + 6]  + [3 (y^2 – 2y + 1)] + 2020
    ->E = [6 (x-y)^2 – 12 (x-y) + 6] + [3 (y^2 – 2y . 1 + 1^2) ] + 2020
    -> E = 6 [(x-y)^2 – 2 (x-y) . 1 + 1^2] + 3 (y-1)^2 + 2020
    -> E =  6 (x-y-1)^2 + 3 (y-1)^2 + 2020
    Với mọi x,y có : $\begin{cases} (x-y-1)^2 ≥0\\ (y-1)^2 ≥0 \end{cases}$
    -> $\begin{cases} 6 (x-y-1)^2 ≥0∀x\\3(y-1)^2  ≥0∀y\end{cases}$
    -> 6 (x-y-1)^2 + 3 (y-1)^2 ≥0∀x,y
    -> 6 (x-y-1)^2 + 3 (y-1)^2 + 2020 ≥ 2020∀x,y
    -> E ≥ 2020∀x,y
    -> min E=2020
    Dấu “=” xảy ra khi :
    ↔ $\begin{cases} (x-y-1)^2=0\\(y-1)^2=0 \end{cases}$
    ↔ $\begin{cases} x-y-1=0\\y-1=0\end{cases}$
    ↔ $\begin{cases} x-y=1\\y=1 \end{cases}$
    ↔ $\begin{cases} x=1+y\\y=1 \end{cases}$
    ↔ $\begin{cases} x=1+1\\y=1 \end{cases}$
    ↔ $\begin{cases} x=2\\y=1\end{cases}$
    Vậy min E = 2020 ↔ x=2,y=1
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Mai Lan