Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: giải phương trình sin^2(3x)-cos^2(4x)=sin^2(5x)-cos^(6x) giải giúp m vs mn ơi

Toán Lớp 11: giải phương trình sin^2(3x)-cos^2(4x)=sin^2(5x)-cos^(6x)
giải giúp m vs mn ơi

Comments ( 2 )

  1. $\begin{array}{l} {\sin ^2}3x – {\cos ^2}4x = {\sin ^2}5x – {\cos ^2}6x\\  \Leftrightarrow \dfrac{{1 – \cos 6x}}{2} – \dfrac{{1 + \cos 8x}}{2} = \dfrac{{1 – \cos 10x}}{2} – \dfrac{{1 + \cos 12x}}{2}\\  \Leftrightarrow  – \cos 6x – \cos 8x =  – \cos 10x – \cos 12x\\  \Leftrightarrow \cos 6x + \cos 8x = \cos 10x + \cos 12x\\  \Leftrightarrow 2\cos 7x\cos x = 2\cos 11x\cos x\\  \Leftrightarrow 2\cos x\left( {\cos 11x – \cos 7x} \right) = 0\\  \Leftrightarrow \left[ \begin{array}{l} \cos x = 0\\ \cos 11x = \cos 7x \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{2} + k\pi \\ 11x = 7x + k2\pi \\ 11x =  – 7x + k2\pi  \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{2} + k\pi \\ x = \dfrac{{k\pi }}{2}\\ x = \dfrac{{k\pi }}{9} \end{array} \right.\\  \Rightarrow \left[ \begin{array}{l} x = \dfrac{{k\pi }}{2}\\ x = \dfrac{{k\pi }}{9} \end{array} \right.\left( {k \in \mathbb{Z}} \right) \end{array}$

  2. sin^2 3x-cos^2 4x=sin^2 5x-cos^2 6x
    ->(1-cos6x)/2-(1+cos8x)/2=(1-cos10x)/2-(1+cos12x)/2
    ->cos12x-cos6x+cos10x-cos8x=0
    ->-2sin9xsin3x-2sin9xsinx=0
    ->sin9x(sin3x+sinx)=0
    -> \(\left[ \begin{array}{l}sin9x=0\\sin3x=-sinx=sin(-x)\end{array} \right.\)
    ->\(\left[ \begin{array}{l}x=k\pi/9\\x=k\pi/2,\pi/2+k\pi(k∈Z)\end{array} \right.\)
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )