Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Nghiệm của phương trình sin(3x – 5pi/6) + cos(3x + 3pi/4) = 0

Toán Lớp 11: Nghiệm của phương trình sin(3x – 5pi/6) + cos(3x + 3pi/4) = 0

Comments ( 2 )

  1. Giải đáp:
    $S=\left\{-\dfrac{5\pi}{72}+k\dfrac{\pi}{3}\,\bigg{|}\,k\in\mathbb Z\right\}$
    Lời giải và giải thích chi tiết:
    $\sin\left(3x-\dfrac{5\pi}{6}\right)+\cos\left(3x+\dfrac{3\pi}{4}\right)=0$
    $⇔\cos\left(3x+\dfrac{3\pi}{4}\right)=-\sin\left(3x-\dfrac{5\pi}{6}\right)$
    $⇔\cos\left(3x+\dfrac{3\pi}{4}\right)=\sin\left(\dfrac{5\pi}{6}-3x\right)$
    $⇔\cos\left(3x+\dfrac{3\pi}{4}\right)=\cos\left(3x-\dfrac{\pi}{3}\right)$
    $⇔\left[ \begin{array}{l}3x+\dfrac{3\pi}{4}=3x-\dfrac{\pi}{3}+k2\pi\\3x+\dfrac{3\pi}{4}=\dfrac{\pi}{3}-3x+k2\pi\end{array} \right.\,\,(k\in\mathbb Z)$
    $⇔\left[ \begin{array}{l}\dfrac{13\pi}{12}=k2\pi\\6x=-\dfrac{5\pi}{12}+k2\pi\end{array} \right.\,\,(k\in\mathbb Z)$
    $⇔\left[ \begin{array}{l}k=\dfrac{13}{24}\,(L)\\x=-\dfrac{5\pi}{72}+k\dfrac{\pi}{3}\end{array} \right.\,\,(k\in\mathbb Z)$
    Vậy $S=\left\{-\dfrac{5\pi}{72}+k\dfrac{\pi}{3}\,\bigg{|}\,k\in\mathbb Z\right\}$.

  2. $\begin{array}{l} \sin \left( {3x – \dfrac{{5\pi }}{6}} \right) + \cos \left( {3x + \dfrac{{3\pi }}{4}} \right) = 0\\  \Leftrightarrow \sin \left( {3x – \dfrac{{5\pi }}{6}} \right) + \cos \left( {3x + \dfrac{\pi }{2} + \dfrac{\pi }{4}} \right) = 0\\  \Leftrightarrow \sin \left( {3x – \dfrac{{5\pi }}{6}} \right) + \sin \left( { – 3x – \dfrac{\pi }{4}} \right) = 0\\  \Leftrightarrow \sin \left( {3x – \dfrac{{5\pi }}{6}} \right) – \sin \left( {3x + \dfrac{\pi }{4}} \right) = 0\\  \Leftrightarrow 2\cos \left( {3x – \dfrac{{7\pi }}{{24}}} \right)\sin \dfrac{{ – 13\pi }}{{24}} = 0\\  \Rightarrow \cos \left( {3x – \dfrac{{7\pi }}{{24}}} \right) = 0\\  \Rightarrow 3x – \dfrac{{7\pi }}{{24}} = \dfrac{\pi }{2} + k\pi \\  \Rightarrow 3x = \dfrac{{19\pi }}{{24}} + k\pi \\  \Rightarrow x = \dfrac{{19\pi }}{{72}} + k\dfrac{\pi }{3}\left( {k \in \mathbb{Z}} \right) \end{array}$  

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Nhi