Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Cos2x-5sinx +3=0 Cos6x -3cos3x -1=0

Toán Lớp 11: Cos2x-5sinx +3=0
Cos6x -3cos3x -1=0

Comments ( 2 )

  1. cos2 x- 5 sinx + 3 = 0
    <=>4 – 5 sinx – 2 sin^2x = 0
    <=>-2 + (5 sinx)/2 + sin^2x = 0
    <=>25/16 + (5 sinx)/2 + sin^2x = 57/16
    <=>(sinx + 5/4)^2 = 57/16
    <=> [(sinx+5/4=sqrt57/4),(sinx+5/4=-sqrt57/4):}
    <=> [(sinx=sqrt57/4-5/4),(sinx=-sqrt57/4-5/4\text{, loại vì:} -1le sin theta le 1):}
    <=> [(x=-arcsin(sqrt57/4-5/4)+k2pi),(x=pi+arcsin(sqrt57/4-5/4)+k2pi):}(kinZZ)
    Vậy S={-arcsin(sqrt57/4-5/4)+k2pi; pi+arcsin(sqrt57/4-5/4)+k2pi | kinZZ}
    ________
    $\\$
    cos6x -3cos3x -1=0
    <=> -2 – 3 cos3x + 2 cos^2 3x = 0
    <=> (cos3x – 2) (2 cos3 x+ 1) = 0
    <=> [(cos3x – 2=0),(2 cos3 x+ 1 = 0):}
    <=> [(cos3x=2\text{, loại vì:} -1 le cos theta le 1), (cos3x=-1/2):}
    <=> [(x=(2pi)/3+k2pi),(x=(4pi)/3+k2pi):}(kinZZ)
    Vậy S={(2pi)/3+k2pi; (4pi)/3+k2pi|kinZZ}

  2. $a)\cos2x-5\sin{x}+3=0\\⇔-2\sin^2{x}-5\sin{x}+4=0\\⇔\sin{x}=\dfrac{-5+\sqrt{57}}{4}\\⇔$\(\left[ \begin{array}{l}x=\arcsin(\dfrac{-5+\sqrt{57}}{4})+k2π\\x=π-\arcsin(\dfrac{-5+\sqrt{57}}{4})+k2π\end{array} \right.(k\in\mathbb{Z})\)
    $b)\cos6x-3\cos3x-1=0\\⇔2\cos^2 3x-3\cos3x-2=0\\⇔\cos3x=\dfrac{-1}{2}\\⇔3x=\dfrac{±2π}{3}+k2π\\⇔x=\dfrac{±2π}{9}+\dfrac{k2π}{3}(k\in\mathbb{Z})$

Leave a reply

222-9+11+12:2*14+14 = ? ( )