Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: các bạn làm giúp mình với nha a.$x^{2}$ -1-$4y^{2}$ +$4y^{}$ b.$2x^{2}$- $y^{2}$ +xy c.$x^{2}$- $20x^{}$ +84=0 d.Tìm x,y là số nguyên

Toán Lớp 8: các bạn làm giúp mình với nha
a.$x^{2}$ -1-$4y^{2}$ +$4y^{}$
b.$2x^{2}$- $y^{2}$ +xy
c.$x^{2}$- $20x^{}$ +84=0
d.Tìm x,y là số nguyên biết:2xy+4x+2y+1>$5x^{2}$+ $2y^{2}$
e. ($x^{2}$ +4x)$^{2}$ -2($x^{2}$ +4x)-15=0

Comments ( 1 )

  1. Giải đáp:
    $\begin{array}{l}
    a){x^2} – 1 – 4{y^2} + 4y\\
     = {x^2} – \left( {4{y^2} – 4y + 1} \right)\\
     = {x^2} – {\left( {2y – 1} \right)^2}\\
     = \left( {x – 2y + 1} \right)\left( {x + 2y – 1} \right)\\
    b)2{x^2} – {y^2} + xy\\
     = 2{x^2} + 2xy – xy – {y^2}\\
     = \left( {x + y} \right)\left( {2x – y} \right)\\
    c){x^2} – 20x + 84 = 0\\
     \Leftrightarrow {x^2} – 6x – 14x + 84 = 0\\
     \Leftrightarrow \left( {x – 6} \right)\left( {x – 14} \right) = 0\\
     \Leftrightarrow x = 6;x = 14\\
    Vậy\,x = 6;x = 14\\
    d)2xy + 4x + 2y + 1 > 5{x^2} + 2{y^2}\\
     \Leftrightarrow 5{x^2} + 2{y^2} – 2xy – 4x – 2y – 1 < 0\\
     \Leftrightarrow \left( {4{x^2} – 4x + 1} \right) + \left( {{x^2} – 2xy + {y^2}} \right)\\
     + {y^2} – 2y + 1 – 3 < 0\\
     \Leftrightarrow {\left( {2x – 1} \right)^2} + {\left( {x – y} \right)^2} + {\left( {y – 1} \right)^2} < 3\\
    Do:x;y \in Z\\
    {\left( {2x – 1} \right)^2} + {\left( {x – y} \right)^2} + {\left( {y – 1} \right)^2} \ge 0\\
     + TH1:\left\{ \begin{array}{l}
    {\left( {2x – 1} \right)^2} = 0\\
    {\left( {x – y} \right)^2} = 0\\
    {\left( {y – 1} \right)^2} = 0
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x = \dfrac{1}{2}\\
    x = y\\
    y = 1
    \end{array} \right.\left( {ktm} \right)\\
     + TH2::\left\{ \begin{array}{l}
    {\left( {2x – 1} \right)^2} = 1\\
    {\left( {x – y} \right)^2} = 0\\
    {\left( {y – 1} \right)^2} = 0
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x = 1\\
    x = y\\
    y = 1
    \end{array} \right. \Leftrightarrow x = y = 1\\
     + TH3:\left\{ \begin{array}{l}
    {\left( {2x – 1} \right)^2} = 0\\
    {\left( {x – y} \right)^2} = 1\\
    {\left( {y – 1} \right)^2} = 0
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x = \dfrac{1}{2}\\
    x = y + 1/x = y – 1\\
    y = 1
    \end{array} \right.\left( {ktm} \right)\\
     + TH4::\left\{ \begin{array}{l}
    {\left( {2x – 1} \right)^2} = 0\\
    {\left( {x – y} \right)^2} = 0\\
    {\left( {y – 1} \right)^2} = 1
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x = \dfrac{1}{2}\\
    x = y\\
    y = 0/y = 2
    \end{array} \right.\left( {ktm} \right)\\
     + TH5:\left\{ \begin{array}{l}
    {\left( {2x – 1} \right)^2} = 1\\
    {\left( {x – y} \right)^2} = 1\\
    {\left( {y – 1} \right)^2} = 0
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x = 0/x = 1\\
    x = y + 1/x = y – 1\\
    y = 1
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x = 0\\
    y = 1
    \end{array} \right.\\
     + TH6::\left\{ \begin{array}{l}
    {\left( {2x – 1} \right)^2} = 1\\
    {\left( {x – y} \right)^2} = 0\\
    {\left( {y – 1} \right)^2} = 1
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x = 1/x = 0\\
    x = y\\
    y = 1/y = 2
    \end{array} \right. \Leftrightarrow x = y = 1\\
     + TH7::\left\{ \begin{array}{l}
    {\left( {2x – 1} \right)^2} = 0\\
    {\left( {x – y} \right)^2} = 1\\
    {\left( {y – 1} \right)^2} = 1
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x = \dfrac{1}{2}\\
    x = y + 1/x = y – 1\\
    y = 1/y = 2
    \end{array} \right.\left( {ktm} \right)\\
    Vậy\,\left( {x;y} \right) = \left\{ {\left( {1;1} \right);\left( {0;1} \right)} \right\}\\
    e){\left( {{x^2} + 4x} \right)^2} – 2\left( {{x^2} + 4x} \right) – 15 = 0\\
    Dat:{x^2} + 4x = a\\
     \Leftrightarrow {a^2} – 2a – 15 = 0\\
     \Leftrightarrow {a^2} – 5a + 3a – 15 = 0\\
     \Leftrightarrow \left( {a – 5} \right)\left( {a + 3} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    {x^2} + 4x – 5 = 0\\
    {x^2} + 4x + 3 = 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    \left( {x – 1} \right)\left( {x + 5} \right) = 0\\
    \left( {x + 1} \right)\left( {x + 3} \right) = 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 1\\
    x =  – 5\\
    x =  – 1\\
    x =  – 3
    \end{array} \right.\\
    Vậy\,x \in \left\{ { – 5; – 3; – 1;1} \right\}
    \end{array}$

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Hòa Tâm