Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: giải phương trình sau: $tan^2(x+\dfrac{\pi}{3})=1$

Toán Lớp 11: giải phương trình sau: $tan^2(x+\dfrac{\pi}{3})=1$

Comments ( 1 )

  1. Điều kiện: 
    $\begin{array}{l}
    \cos \left( {x + \dfrac{\pi }{3}} \right) \ne 0 \Leftrightarrow x + \dfrac{\pi }{3} \ne \dfrac{\pi }{2} + k\pi \\
     \Leftrightarrow x \ne \dfrac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right)
    \end{array}$
    $\begin{array}{l} {\tan ^2}\left( {x + \dfrac{\pi }{3}} \right) = 1\\  \Leftrightarrow \left[ \begin{array}{l} \tan \left( {x + \dfrac{\pi }{3}} \right) = 1\\ \tan \left( {x + \dfrac{\pi }{3}} \right) =  – 1 \end{array} \right.\\  \Leftrightarrow \left[ \begin{array}{l} x + \dfrac{\pi }{3} = \dfrac{\pi }{4} + k\pi \\ x + \dfrac{\pi }{3} =  – \dfrac{\pi }{4} + k\pi  \end{array} \right.\\  \Leftrightarrow \left[ \begin{array}{l} x =  – \dfrac{\pi }{{12}} + k\pi \\ x =  – \dfrac{{7\pi }}{{12}} + k\pi  \end{array} \right.\left( {k \in \mathbb{Z}} \right) \end{array}$  

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About An Kim