Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: Tìm GTNN của căn x. (căn x – 2) / 1 + căn x

Toán Lớp 9: Tìm GTNN của căn x. (căn x – 2) / 1 + căn x

Comments ( 2 )

  1. $\dfrac{\sqrt{x}(\sqrt{x}-2)}{1+\sqrt{x}}$ $( x \geq 0)$
    $=\dfrac{x-2\sqrt{x}}{\sqrt{x}+1}$
    $=\dfrac{(\sqrt{x}+1)^2-4(\sqrt{x}+1)+3}{\sqrt{x}+1}$
    $=\sqrt{x}+1+\dfrac{3}{\sqrt{x}+1}-4$
    Áp dụng bất đẳng thức Cô-si , ta có :
    $\sqrt{x}+1+\dfrac{3}{\sqrt{x}+1} \geq 2.\sqrt{(\sqrt{x}+1).\dfrac{3}{\sqrt{x}+1}}=2\sqrt{3}$
    $⇔\sqrt{x}+1+\dfrac{3}{\sqrt{x}+1}-4 \geq 2\sqrt{3}-4$
    Dấu $”=”$ xảy ra khi : 
    $\sqrt{x}+1=\dfrac{3}{\sqrt{x}+1}$
    $⇔(\sqrt{x}+1)^2=3$
    $⇔\sqrt{x}+1=\sqrt{3}$
    $⇔\sqrt{x}=\sqrt{3}-1$
    $⇔x=4-2\sqrt{3}$
    Vậy $GTNN=2\sqrt{3}-4$ khi $x=4-2\sqrt{3}$

  2. $\dfrac{\sqrt{x}(\sqrt{x}-2)}{1+\sqrt{x}}$
    $=\dfrac{x-2\sqrt{x}}{1+\sqrt{x}}$
    $=\sqrt{x}+1+\dfrac{3}{\sqrt{x}+1}-4$
    $\sqrt{x}+1+\dfrac{3}{\sqrt{x}+1}≥2\sqrt{(\sqrt{x}+1)\dfrac{3}{\sqrt{x}+1}}$ (bđt cosi)
    $⇔\sqrt{x}+1+\dfrac{3}{\sqrt{x}+1}≥2\sqrt{3}$
    $⇔\sqrt{x}+1+\dfrac{3}{\sqrt{x}+1}-4≥2\sqrt{3}-4$
    Dấu $”=”$ xảy ra khi
    $\sqrt{x}+1=\dfrac{3}{\sqrt{x}+1}$
    $⇔x=4-2\sqrt{3}$
    Vậy $Min=2\sqrt{3}-4⇔x=4-2\sqrt{3}$

Leave a reply

222-9+11+12:2*14+14 = ? ( )