Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: giải hệ phương trình $\sqrt {2x+1}$ +$\frac{3}{|y|}$ =4 2 $\sqrt {2x+1}$ + $\frac{1}{

Toán Lớp 9: giải hệ phương trình $\sqrt {2x+1}$ +$\frac{3}{|y|}$ =4
2 $\sqrt {2x+1}$ + $\frac{1}{|y|}$ =1

Comments ( 1 )

  1. Giải đáp+Lời giải và giải thích chi tiết:

    $\begin{cases}\sqrt{2x+1}+\dfrac{3}{|y|}=4\\2\sqrt{2x+1}+\dfrac{1}{|y|}=1\end{cases}(x≥\dfrac{-1}{2};y\ne0)(1)$
    Đặt \sqrt{2x+1}=m(m≥0);\frac{1}{|y|}=n(n\ne0)

    Khi đó (1) trở thành

    $\begin{cases}m+3n=4\\2m+n=1\end{cases}$
    $⇔\begin{cases}2m+6n=8\\2m+n=1\end{cases}$

    $⇔\begin{cases}5n=7\\2m+n=1\end{cases}$

    $⇔\begin{cases}n=\dfrac{7}{5}(tm)\\2m+\dfrac{7}{5}=1\end{cases}$

    $⇔\begin{cases}n=\dfrac{7}{5}\\2m=\dfrac{-2}{5}\end{cases}$

    $⇔\begin{cases}n=\dfrac{7}{5}\\m=\dfrac{-1}{5}(L)\end{cases}$

    Vậy $S=\emptyset$

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Lan Anh