Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: Chứng minh: √(a² + b²) ≥ (a+b)/√2 với mọi a;b ≥ 0.

Toán Lớp 9: Chứng minh: √(a² + b²) ≥ (a+b)/√2 với mọi a;b ≥ 0.

Comments ( 1 )

  1. \forall a ; b \ge 0 ta có :
    (a-b)^2\ge 0
    <=> a^2 – 2ab + b^2 \ge 0
    <=> a^2 + b^2 \ge 2ab
    <=> a^2 + a^2 + b^2 + b^2 \ge a^2+b^2+2ab
    <=> 2 (a^2 + b^2) \ge (a+b)^2
    <=> a^2 + b^2 \ge ((a+b)^2)/2
    <=> \sqrt{a^2+b^2} \ge \sqrt{ ((a+b)^2)/2}
    <=> \sqrt{a^2+b^2} \ge (|a+b|)/(\sqrt{2})
    <=> \sqrt{a^2+b^2} \ge (a+b)/(\sqrt{2}) (do a ; b \ge 0)
    Vậy \sqrt{a^2+b^2} \ge (a+b)/(\sqrt{2}) \forall a ; b \ge 0

Leave a reply

222-9+11+12:2*14+14 = ? ( )