Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: Cho ΔABC có ∠A = 75°, AB = 10cm , ∠B : ∠C = 4 : 3. Tính CA, BC và SΔABC

Toán Lớp 9: Cho ΔABC có ∠A = 75°, AB = 10cm , ∠B : ∠C = 4 : 3.
Tính CA, BC và SΔABC

Comments ( 1 )

  1. $\widehat B:\widehat C=4:3\\↔\dfrac{\widehat B}{\widehat C}=\dfrac{4}{3}\\↔\widehat B=\dfrac{4\widehat C}{3}$
    Xét $ΔABC$:
    $\widehat A+\widehat B+\widehat C=180^\circ\\↔75^\circ+\dfrac{4\widehat C}{3}+\widehat C=180^\circ\\↔\dfrac{7\widehat C}{3}=105^\circ\\↔7\widehat C=315^\circ\\↔\widehat C=45^\circ\\→\widehat B=60^\circ$
    Kẻ đường cao $AH$
    Xét $ΔABH$ vuông tại $H$:
    $\sin\widehat B=\dfrac{AH}{AB}$ hay $\sin 60^\circ=\dfrac{AH}{10}$
    $↔\dfrac{\sqrt 3}{2}=\dfrac{AH}{10}$
    $↔5\sqrt 3cm=AH$
    Xét $ΔACH$ vuông tại $H$:
    $\sin\widehat C=\dfrac{AH}{AC}$ hay $\sin 45^\circ=\dfrac{5\sqrt 3}{AC}$
    $↔\dfrac{\sqrt 2}{2}=\dfrac{5\sqrt 3}{AC}$
    $↔AC=5\sqrt 6cm$
    Xét $ΔABH$ vuông tại $H$:
    $\cos\widehat B=\dfrac{BH}{AB}$ hay $\cos 60^\circ=\dfrac{BH}{10}$
    $↔\dfrac{1}{2}=\dfrac{BH}{10}\\↔BH=5cm$
    Xét $ΔACH$ vuông tại $H$:
    $\tan\widehat C=\dfrac{AH}{CH}$ hay $\tan 45^\circ=\dfrac{5\sqrt 3}{CH}$
    $↔1=\dfrac{5\sqrt 3}{CH}\\↔5\sqrt 3cm=CH$
    Ta có: $BC=BH+CH=5+5\sqrt 3$
    $S_{ΔABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.5\sqrt 3.(5+5\sqrt 3)=\dfrac{75+25\sqrt 3}{2}cm^2$
    Vậy $AC=5\sqrt 6cm,BC=5+5\sqrt 3,S_{ΔABC}=\dfrac{75+25\sqrt 3}{2}cm^2$

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Thúy Mai