Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: Cho a,b,c >0 cmr a^3+b^3+c^c^3+24abc <= (a+b+c)^3

Toán Lớp 9: Cho a,b,c >0 cmr a^3+b^3+c^c^3+24abc <= (a+b+c)^3

Comments ( 2 )

  1. $\text{Ta có hằng đẳng thức }$
    $\text{(a+b+c)³=a³+b³+c³+3.(a+b).(b+c).(c+a)}$
    $\text{Áp dụng AM-GM ,ta có}$
    $\text{a+b≥2.$\sqrt[]{ab}$ }$
    $\text{b+c≥2.$\sqrt[]{cb}$ }$
    $\text{c+a≥2.$\sqrt[]{ac}$ }$
    $\text{⇒(a+b).(b+c).(c+a)≥8abc}$
    $\text{⇔3.(a+b).(b+c).(c+a)≥24abc}$
    $\text{Suy ra }$
    $\text{(a+b+c)³≥a³+b³+c³+24abc }$
     

  2. Dễ chứng minh
    ${\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {b + c} \right)\left( {a + c} \right)$
    $\begin{array}{l}
    {\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {b + c} \right)\left( {a + c} \right)\\
    {a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {b + c} \right)\left( {a + c} \right) \ge 3.2\sqrt {ab} .2.\sqrt {bc} .2\sqrt {ca}  + {a^3} + {b^3} + {c^3}\\
     \Rightarrow {\left( {a + b + c} \right)^3} \ge {a^3} + {b^3} + {c^3} + 24\sqrt {{{\left( {abc} \right)}^2}}  = {a^3} + {b^3} + {c^3}
    \end{array}$
    Dấu bằng xảy ra khi và chỉ khi $a=b=c$

Leave a reply

222-9+11+12:2*14+14 = ? ( )