Toán Lớp 9: 60đ nên làm hẳn hoi nha ;33
Bài 6:Cho nửa đường tròn (O; R) đường kính AB. Từ A và B vẽ các tiếp tuyến Ax và By với nửa đường tròn. Một góc vuông quay quanh O, hai cạnh của góc cắt Ax và By lần lượt tại C và D. Hai đường thẳng OD và Ax cắt nhau tại E. Chứng minh rằng:
a) AC.BD = R^2
b) Tam giác CDE là tam giác cân.
c) CD là tiếp tuyến của nửa đường tròn (O).
Leave a reply
About Mỹ Thuận
Related Posts
Toán Lớp 5: Một khu vườn hình chữ nhật có chiều dài gấp đôi chiều rộng, nếu tăng chiều rộng 10m và giảm chiều dài 10m thì diện tích khu gườn tăng t
Toán Lớp 5: Bài 1.Một xưởng dệt được 732m vải hoa chiếm 91,5% tổng số vải xưởng đó đã dệt. Hỏi xưởng đó đã dệt được bao nhiêu mét vải? (0.5 Points)
Toán Lớp 8: a, 3x^3 – 6x^2 -6x +12 =0 b, 8x^3 -8x^2 – 4x + 1=0
Toán Lớp 5: Số nhỏ nhất trong các số đo khối lượng 1,512kg, 1,5kg, 1kg51dag, 15dag5g là
Toán Lớp 5: Số nhỏ nhất trong các số đo khối lượng 1,512kg, 1,5kg, 1kg51dag, 15dag5g là giúp mik với, gấp lm
Comments ( 1 )
Giải đáp:
a) góc COD=90 => CO vuông góc ED
Xét tam giác AOE và BOD:
Ta có: góc AOE = góc BOD (do đối đỉnh)
AO = BO (O là tâm đường tròn có AB đường kính)
EAO=OBD(=90)
=>tam giác AOE và BOD bằng nhau (g.c.g)
=>AE=BD
tam giác OCE vuông tại O có AO đường cao
=>R2=AO2=AC.AE=AC.BD(htl)
b) tam giác AOE và BOD bằng nhau (cmt)
=>OE=OD
=>O là trung điểm DE
=> CO là trung tuyến tam giác CDE
mà CO là đường cao tam giác CDE (CO vuông góc DE)
=>tam giác CDE cân tại C
c) Kẻ OF vuông góc CD tại F
tam giác COD vuông tại O có OF đường cao
=>1/OF2=1/OC2+1/OD2=1/OC2+1/OE2 (htl) (1)
tam giác COE vuông tại O có OA đường cao:
=>1/R2=1/OA2=1/OC2+1/OE2(htl) (2)
Từ (1), (2)
Suy ra
=> OF = R
=>F thuộc (O)
Mà OF vuông góc CD tại F
=> CD là tiếp tuyến (O)
Lời giải và giải thích chi tiết: