Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: quy đồng mẫu thức của các phân thức 1 /x+2; -3x/x-2; 3/x^2-4x+4 -1/2x+2; 3/2-2x;5/4x^2+4x+1

Toán Lớp 8: quy đồng mẫu thức của các phân thức
1 /x+2; -3x/x-2; 3/x^2-4x+4
-1/2x+2; 3/2-2x;5/4x^2+4x+1

Comments ( 1 )

  1. Giải đáp:
    $\begin{array}{l}
    a)\dfrac{1}{{x + 2}};\dfrac{{ – 3x}}{{x – 2}};\dfrac{3}{{{x^2} – 4x + 4}}\\
    MSC = {\left( {x – 2} \right)^2}.\left( {x + 2} \right)\\
     \Leftrightarrow \left\{ \begin{array}{l}
    \dfrac{1}{{x + 2}} = \dfrac{{{{\left( {x – 2} \right)}^2}}}{{{{\left( {x – 2} \right)}^2}\left( {x + 2} \right)}}\\
    \dfrac{{ – 3x}}{{x – 2}} = \dfrac{{ – 3x\left( {x – 2} \right)\left( {x + 2} \right)}}{{{{\left( {x – 2} \right)}^2}\left( {x + 2} \right)}} = \dfrac{{ – 3{x^3} + 12x}}{{{{\left( {x – 2} \right)}^2}\left( {x + 2} \right)}}\\
    \dfrac{3}{{{x^2} – 4x + 4}} = \dfrac{{3\left( {x + 2} \right)}}{{{{\left( {x – 2} \right)}^2}\left( {x + 2} \right)}} = \dfrac{{3x + 6}}{{{{\left( {x – 2} \right)}^2}\left( {x + 2} \right)}}
    \end{array} \right.\\
    b)\\
    \dfrac{{ – 1}}{{2x + 2}};\dfrac{3}{{2 – 2x}};\dfrac{5}{{4{x^2} + 4x + 1}}\\
    MSC = 2.\left( {x + 1} \right)\left( {1 – x} \right).{\left( {2x + 1} \right)^2}\\
     + ) – \dfrac{1}{{2x + 2}} = \dfrac{{ – \left( {1 – x} \right){{\left( {2x + 1} \right)}^2}}}{{2.\left( {x + 1} \right)\left( {1 – x} \right).{{\left( {2x + 1} \right)}^2}}}\\
     = \dfrac{{\left( {x – 1} \right)\left( {4{x^2} + 4x + 1} \right)}}{{2.\left( {x + 1} \right)\left( {1 – x} \right).{{\left( {2x + 1} \right)}^2}}}\\
     = \dfrac{{4{x^3} – 3x – 1}}{{2.\left( {x + 1} \right)\left( {1 – x} \right).{{\left( {2x + 1} \right)}^2}}}\\
     + )\dfrac{3}{{2 – 2x}} = \dfrac{{3\left( {x + 1} \right){{\left( {2x + 1} \right)}^2}}}{{2.\left( {x + 1} \right)\left( {1 – x} \right).{{\left( {2x + 1} \right)}^2}}}\\
     = \dfrac{{\left( {3x + 3} \right)\left( {4{x^2} + 4x + 1} \right)}}{{2.\left( {x + 1} \right)\left( {1 – x} \right).{{\left( {2x + 1} \right)}^2}}}\\
     = \dfrac{{12{x^3} + 24{x^2} + 15x + 3}}{{2.\left( {x + 1} \right)\left( {1 – x} \right).{{\left( {2x + 1} \right)}^2}}}\\
     + )\dfrac{5}{{4{x^2} + 4x + 1}} = \dfrac{{5.2.\left( {x + 1} \right)\left( {1 – x} \right)}}{{2.\left( {x + 1} \right)\left( {1 – x} \right).{{\left( {2x + 1} \right)}^2}}}\\
     = \dfrac{{10\left( {1 – {x^2}} \right)}}{{2.\left( {x + 1} \right)\left( {1 – x} \right).{{\left( {2x + 1} \right)}^2}}}\\
     = \dfrac{{10 – 10{x^2}}}{{2.\left( {x + 1} \right)\left( {1 – x} \right).{{\left( {2x + 1} \right)}^2}}}
    \end{array}$

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Xuân