Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: phân tích đa thức thành nhân tử: a)x^2-2xy+x-2y b)x^2-5x+6 c) x^3-y^3+2x^2+2xy d) x^5+x+1

Toán Lớp 8: phân tích đa thức thành nhân tử: a)x^2-2xy+x-2y b)x^2-5x+6 c) x^3-y^3+2x^2+2xy d) x^5+x+1

Comments ( 2 )

  1. Giải đáp + Lời giải và giải thích chi tiết:
    $x^2-2xy+x-2y$
    $=(x^2 – 2xy) + (x – 2y)$
    $=x(x – 2y) + (x – 2y)$
    $=(x + 1)(x – 2y)$
    $x^2 – 5x + 6$
    $= (x^2 – 2x) – (3x – 6)$
    $= x(x – 2) – 3(x – 2)$
    $= (x – 2)(x – 3)$
    $x^3-y^3+2x^2+2xy$
    $=(x+y).(x^2-xy+y^2)+2x.(x+y)$
    $=(x+y).(x^2-xy+y^2+2x)$
    $x^5+x+1$
    $= x^5 + x^4 + x^3 + x^2 + x + 1 – x^4 – x^3 – x^2$
    $=(x^5+x^4+x^3)+(x^2+x+1)-(x^4+x^3+x^2)$
    $=x^3(x^2+x+1)+(x^2+x+1)-x^2(x^2+x+1)$
    $=(x^2+x+1)(x^3+x^2+1)$
     

  2. #andy
    \[\begin{array}{l}
    a){x^2}\; – {\rm{ }}2xy{\rm{ }} + {\rm{ }}x{\rm{ }} – {\rm{ }}2y\\
     = ({x^2}\; – {\rm{ }}2xy){\rm{ }} + {\rm{ }}\left( {x{\rm{ }} – {\rm{ }}2y} \right)\\
     = x\left( {x{\rm{ }} – {\rm{ }}2y} \right){\rm{ }} + {\rm{ }}\left( {x{\rm{ }} – {\rm{ }}2y} \right)\\
     = \left( {x{\rm{ }} + {\rm{ }}1} \right)\left( {x{\rm{ }} – {\rm{ }}2y} \right)\\
    b){x^{2\;}} – {\rm{ }}5x{\rm{  +  }}6\\
     = {\rm{ }}{x^{2\;}} + {\rm{ }}x{\rm{ }} – {\rm{ }}6x{\rm{  +  }}6\\
     = x\left( {x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} – {\rm{ }}6\left( {x{\rm{ }} + {\rm{ }}1} \right)\\
     = {\rm{ }}\left( {x{\rm{ }} + {\rm{ }}1} \right)\left( {x{\rm{ }} – {\rm{ }}6} \right)\\
    c){x^3} – {y^3} + 2{x^2} + 2xy\\
     = (x + y)({x^2} – xy + {y^2}) + 2x(x + y)\\
     = (x + y)({x^2} – xy + {y^2} + 2x)\\
    d){x^5}\; + {\rm{ }}x{\rm{ }} + {\rm{ }}1\\
    \begin{array}{*{20}{l}}
    { = {\rm{ }}{x^5}\; – {\rm{ }}{x^2}\; + {\rm{ }}{x^2}\; + {\rm{ }}x{\rm{ }} + {\rm{ }}1}\\
    { = {\rm{ }}{x^2}\left( {{\rm{ }}{x^3}\; – {\rm{ }}1} \right){\rm{ }} + {\rm{ }}\left( {{\rm{ }}{x^2}\; + {\rm{ }}x{\rm{ }} + {\rm{ }}1} \right)}\\
    { = {\rm{ }}{x^2}\left( {{\rm{ }}x{\rm{ }} – {\rm{ }}1} \right)\left( {{\rm{ }}{x^2}\; + {\rm{ }}x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} + {\rm{ }}\left( {{\rm{ }}{x^2}\; + {\rm{ }}x{\rm{ }} + {\rm{ }}1} \right)}
    \end{array}\\
     = {\rm{ }}({\rm{ }}{x^2}\; + {\rm{ }}x{\rm{ }} + {\rm{ }}1)({\rm{ }}{x^3}\; – {\rm{ }}{x^2}\; + {\rm{ }}1)
    \end{array}\]

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Kim Dung