Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: helpppppppppppppppppppppppppppppppppppppppppp a) $\frac{35(x^{2}-y^{2})(x+y)^{2}}{77(y-x)^{2}(x+y)^{3}}$ b) $\frac{4x^{2}y^{2}+1-4xy}{

Toán Lớp 8: helpppppppppppppppppppppppppppppppppppppppppp
a) $\frac{35(x^{2}-y^{2})(x+y)^{2}}{77(y-x)^{2}(x+y)^{3}}$ 
b) $\frac{4x^{2}y^{2}+1-4xy}{8x^{3}y^{3}-1-6xy(2xy-1)}$ 
c) $\frac{x^{2}-xy-xz+z}{x^{2}+xy-xz-yz}$

Comments ( 2 )

  1. $a,$ $\dfrac{35(x^2-y^2)(x+y)^2}{77(y-x)^2(x+y)^3}$ 

    $=\dfrac{35(x-y)(x+y)(x+y)^2}{77(x-y)^2(x+y)^3}$ 

    $=\dfrac{35(x+y)}{77(x-y)(x+y)}$ 

    $=\dfrac{35}{77(x-y)}$ 

    $=\dfrac{7.5}{7.11(x-y)}$ 

    $=\dfrac{5}{11(x-y)}$ 

    $b,$ $\dfrac{4x^2y^2+1-4xy}{8x^3y^3-1-6xy(2xy-1)}$ 

    $=\dfrac{(2xy)^2-4xy+1}{8x^3y^3-1-12x^2y^2+6xy}$ 

    $=\dfrac{(2xy-1)^2}{8x^3y^3-12x^2y^2+6xy-1}$ 

    $=\dfrac{(2xy-1)^2}{(2xy-1)^3}$ 

    $=\dfrac{1}{2xy-1}$ 

    $c,$ Sửa: $\dfrac{x^2-xy-xz+zy}{x^2+xy-xz-yz}$ 

    $=\dfrac{x(x-y)-z(x-y)}{x(x+y)-z(x+y)}$ 

    $=\dfrac{(x-z)(x-y)}{(x-z)(x+y)}$ 

    $=\dfrac{x-y}{x+y}$ 

  2. Giải đáp:

    $\begin{array}{l} a. \quad \dfrac{5}{11(x-y)} \\ b. \quad\dfrac{1}{2xy-1} \\c . \quad \dfrac{x-y}{x+y} \end{array}$

    Lời giải và giải thích chi tiết:

    a/

    $\dfrac{35(x^2 -y^2)(x+y)^2}{77(y-x)^2(x+y)^3}$
    = (35(x-y)(x+y)(x+y)^2)/(77(x-y)^2(x+y)^3)

    = 5/(11(x-y))
    b/

    (4x^2y^2+1-4xy )/(8x^3y^3 -1-6xy(2xy-1))

    = ( (2xy-1)^2)/( (2xy-1)(4x^2y^2 +2xy +1) – 6xy(2xy-1))
    = ( (2xy-1)^2)/( (2xy-1)(4x^2y^2 -4xy+1))
    = ( (2xy-1)^2)/( (2xy-1)(2xy-1)^2)

    = 1/(2xy-1) 

    c/

    (x^2 -xy-xz+zy)/(x^2+xy -xz -yz)

    = ( x(x-y) – z(x-y) )/( x(x+y) – z(x+y))

    = ( (x-z)(x-y))/((x-z)(x+y))

    = (x-y)/(x+y)

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Khanh