Toán Lớp 8: $\frac{2x}{x+1}$ – $\frac{5}{2-x}$ – $\frac{2x-1}{x^{2}-4}$
Mọi người giả giúp e với ạ
Register Now
Login
Lost Password
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Comments ( 1 )
Giải đáp:
\(\dfrac{{2{x^3} + 3{x^2} + 6x + 11}}{{\left( {{x^2} – 4} \right)\left( {x + 1} \right)}}\)
Lời giải và giải thích chi tiết:
\(\begin{array}{l}
DK:x \ne \left\{ { – 2; – 1;2} \right\}\\
\dfrac{{2x}}{{x + 1}} – \dfrac{5}{{2 – x}} – \dfrac{{2x – 1}}{{{x^2} – 4}}\\
= \dfrac{{2x\left( {{x^2} – 4} \right) + 5\left( {x + 2} \right)\left( {x + 1} \right) – \left( {2x – 1} \right)\left( {x + 1} \right)}}{{\left( {{x^2} – 4} \right)\left( {x + 1} \right)}}\\
= \dfrac{{2{x^3} – 8x + 5\left( {{x^2} + 3x + 2} \right) – 2{x^2} – x + 1}}{{\left( {{x^2} – 4} \right)\left( {x + 1} \right)}}\\
= \dfrac{{2{x^3} – 2{x^2} – 9x + 5{x^2} + 15x + 10 + 1}}{{\left( {{x^2} – 4} \right)\left( {x + 1} \right)}}\\
= \dfrac{{2{x^3} + 3{x^2} + 6x + 11}}{{\left( {{x^2} – 4} \right)\left( {x + 1} \right)}}
\end{array}\)