Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: chuyển thành nhân tử `e, x^(10)+x^5+1` `f, x^8+x+1` `g, x^8+x^4+1`

Toán Lớp 8: chuyển thành nhân tử
e, x^(10)+x^5+1
f, x^8+x+1
g, x^8+x^4+1

Comments ( 1 )

  1. Giải đáp:
    \(\begin{array}{l}
    e,\\
    {x^{10}} + {x^5} + 1 = \left( {{x^2} + x + 1} \right).\left( {{x^8} – {x^7} + {x^5} – {x^4} + {x^3} – x + 1} \right)\\
    f,\\
    {x^8} + x + 1 = \left( {{x^2} + x + 1} \right).\left( {{x^6} – {x^5} + {x^3} – {x^2} + 1} \right)\\
    g,\\
    {x^8} + {x^4} + 1 = \left( {{x^2} + x + 1} \right).\left( {{x^6} – {x^5} + {x^3} – x + 1} \right)
    \end{array}\)
    Lời giải và giải thích chi tiết:
     Ta có:
    \(\begin{array}{l}
    e,\\
    {x^{10}} + {x^5} + 1\\
     = \left( {{x^{10}} – x} \right) + \left( {{x^5} – {x^2}} \right) + \left( {{x^2} + x + 1} \right)\\
     = x.\left( {{x^9} – 1} \right) + {x^2}.\left( {{x^3} – 1} \right) + \left( {{x^2} + x + 1} \right)\\
     = x.\left[ {{{\left( {{x^3}} \right)}^3} – {1^3}} \right] + {x^2}.\left( {{x^3} – 1} \right) + \left( {{x^2} + x + 1} \right)\\
     = x.\left( {{x^3} – 1} \right).\left[ {{{\left( {{x^3}} \right)}^2} + {x^3}.1 + {1^2}} \right] + {x^2}.\left( {{x^3} – 1} \right) + \left( {{x^2} + x + 1} \right)\\
     = x\left( {{x^3} – 1} \right).\left( {{x^6} + {x^3} + 1} \right) + {x^2}.\left( {{x^3} – 1} \right) + \left( {{x^2} + x + 1} \right)\\
     = \left( {{x^3} – 1} \right).\left( {{x^7} + {x^4} + x} \right) + {x^2}.\left( {{x^3} – 1} \right) + \left( {{x^2} + x + 1} \right)\\
     = \left( {{x^3} – 1} \right).\left( {{x^7} + {x^4} + {x^2} + x} \right) + \left( {{x^2} + x + 1} \right)\\
     = \left( {x – 1} \right).\left( {{x^2} + x + 1} \right).\left( {{x^7} + {x^4} + {x^2} + x} \right) + \left( {{x^2} + x + 1} \right)\\
     = \left( {{x^2} + x + 1} \right).\left[ {\left( {x – 1} \right).\left( {{x^7} + {x^4} + {x^2} + x} \right) + 1} \right]\\
     = \left( {{x^2} + x + 1} \right).\left( {{x^8} + {x^5} + {x^3} + {x^2} – {x^7} – {x^4} – {x^2} – x + 1} \right)\\
     = \left( {{x^2} + x + 1} \right).\left( {{x^8} – {x^7} + {x^5} – {x^4} + {x^3} – x + 1} \right)\\
    f,\\
    {x^8} + x + 1\\
     = \left( {{x^8} – {x^2}} \right) + {x^2} + x + 1\\
     = {x^2}.\left( {{x^6} – 1} \right) + \left( {{x^2} + x + 1} \right)\\
     = {x^2}.\left[ {{{\left( {{x^3}} \right)}^2} – 1} \right] + \left( {{x^2} + x + 1} \right)\\
     = {x^2}.\left( {{x^3} – 1} \right).\left( {{x^3} + 1} \right) + \left( {{x^2} + x + 1} \right)\\
     = \left( {{x^3} – 1} \right).\left( {{x^5} + {x^2}} \right) + \left( {{x^2} + x + 1} \right)\\
     = \left( {x – 1} \right).\left( {{x^2} + x + 1} \right).\left( {{x^5} + {x^2}} \right) + \left( {{x^2} + x + 1} \right)\\
     = \left( {{x^2} + x + 1} \right).\left[ {\left( {x – 1} \right).\left( {{x^5} + {x^2}} \right) + 1} \right]\\
     = \left( {{x^2} + x + 1} \right).\left( {{x^6} + {x^3} – {x^5} – {x^2} + 1} \right)\\
     = \left( {{x^2} + x + 1} \right).\left( {{x^6} – {x^5} + {x^3} – {x^2} + 1} \right)\\
    g,\\
    {x^8} + {x^4} + 1\\
     = \left( {{x^8} – {x^2}} \right) + \left( {{x^4} – x} \right) + \left( {{x^2} + x + 1} \right)\\
     = {x^2}.\left( {{x^6} – 1} \right) + x\left( {{x^3} – 1} \right) + \left( {{x^2} + x + 1} \right)\\
     = {x^2}.\left[ {{{\left( {{x^3}} \right)}^2} – {1^2}} \right] + x.\left( {{x^3} – 1} \right) + \left( {{x^2} + x + 1} \right)\\
     = {x^2}.\left( {{x^3} – 1} \right)\left( {{x^3} + 1} \right) + x.\left( {{x^3} – 1} \right) + \left( {{x^2} + x + 1} \right)\\
     = \left( {{x^3} – 1} \right).\left( {{x^5} + {x^2}} \right) + x.\left( {{x^3} – 1} \right) + \left( {{x^2} + x + 1} \right)\\
     = \left( {{x^3} – 1} \right).\left( {{x^5} + {x^2} + x} \right) + \left( {{x^2} + x + 1} \right)\\
     = \left( {x – 1} \right).\left( {{x^2} + x + 1} \right)\left( {{x^5} + {x^2} + x} \right) + \left( {{x^2} + x + 1} \right)\\
     = \left( {{x^2} + x + 1} \right).\left[ {\left( {x – 1} \right)\left( {{x^5} + {x^2} + x} \right) + 1} \right]\\
     = \left( {{x^2} + x + 1} \right).\left( {{x^6} + {x^3} + {x^2} – {x^5} – {x^2} – x + 1} \right)\\
     = \left( {{x^2} + x + 1} \right).\left( {{x^6} – {x^5} + {x^3} – x + 1} \right)
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )