Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Chứng minh : a^2+b^2+1≥ab +a+b

Toán Lớp 8: Chứng minh : a^2+b^2+1≥ab +a+b

Comments ( 1 )

  1. Lời giải và giải thích chi tiết:
     Ta có:
    \(\begin{array}{l}
    {\left( {a – b} \right)^2} \ge 0,\,\,\,\forall a,b\\
     \Leftrightarrow {a^2} – 2ab + {b^2} \ge 0,\,\,\,\forall a,b\\
     \Leftrightarrow {a^2} + {b^2} \ge 2ab,\,\,\,\forall a,b\\
    {\left( {a – 1} \right)^2} \ge 0,\,\,\,\forall a\\
     \Leftrightarrow {a^2} – 2.a.1 + {1^2} \ge 0,\,\,\,\forall a\\
     \Leftrightarrow {a^2} – 2a + 1 \ge 0,\,\,\,\forall a\\
     \Leftrightarrow {a^2} + 1 \ge 2a,\,\,\,\forall \,a\\
    {\left( {b – 1} \right)^2} \ge 0,\,\,\,\forall b\\
     \Leftrightarrow {b^2} – 2.b.1 + {1^2} \ge 0,\,\,\,\forall b\\
     \Leftrightarrow {b^2} – 2b + 1 \ge 0,\,\,\,\forall b\\
     \Leftrightarrow {b^2} + 1 \ge 2b,\,\,\,\forall b\\
     \Rightarrow \left( {{a^2} + {b^2}} \right) + \left( {{a^2} + 1} \right) + \left( {{b^2} + 1} \right) \ge 2ab + 2a + 2b,\,\,\,\forall \,a,b\\
     \Leftrightarrow 2\left( {{a^2} + {b^2} + 1} \right) \ge 2\left( {ab + a + b} \right),\,\,\,\forall \,a,b\\
     \Leftrightarrow {a^2} + {b^2} + 1 \ge ab + a + b,\,\,\,\forall \,a,b
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Khanh