Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Cho x,y,z thoã mãn x+y+z+xy+yz+xz=3033. Chứng minh rằng x^2+y^2+z^2>2021

Toán Lớp 8: Cho x,y,z thoã mãn x+y+z+xy+yz+xz=3033. Chứng minh rằng x^2+y^2+z^2>2021

Comments ( 1 )

  1. $\begin{cases} (x-y)^2\ge0\\(y-z)^2\ge 0\\(x-z)^2\ge 0\end{cases}\\\to (x-y)^2+(y-z)^2+(x-z)^2\ge 0\\\to x^2-2xy + y^2 +y^2-2yz+z^2 + z^2-2xz + x^2\ge 0\\\to 2x^2 +2y^2+z^2\ge 2xy + 2xz + 2yz(1)$
    Dấu “$=$” xảy ra khi : $\begin{cases}x-y=0\\y-z=0\\x-z=0 \end{cases}↔x=y=z$
    $\begin{cases}(x-1)^2\ge 0\\(y-1)^2\ge 0\\(z-1)^2\ge 0 \end{cases}\\\to (x-1)^2+(y-1)^2+(z-1)^2\ge 0\\\to x^2-2x+1 + y^2 – 2y + 1 +z^2-2z+1\ge 0\\\to x^2+y^2+z^2 + 3\ge 2x+2y+2z$
    Dấu “$=$” xảy ra khi : $\begin{cases} x-1=0\\y-1=0\\z-1=0 \end{cases}↔x=y=z=1$ (Không thỏa mãn $x+y+z+xy+yz+xz$)
    $\to x^2+y^2+z^2 +3 > 2x+2y+2z(2)$
    $(1)+(2)\to 3x^2+3y^2+3z^2 + 3 > 2xy + 2xz+2yz + 2x+2y+2z\\\to 3 (x^2+y^2+z^2)+3> 2 . 3033 \\\to x^2+y^2+z^2> \dfrac{2.3033 – 3}{3}\\\to x^2+y^2+z^2> 2021$
    Vậy $x^2+y^2+z^2>2021$

Leave a reply

222-9+11+12:2*14+14 = ? ( )