Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Cho tam giác ABC vuông cân tại A. Điểm M thuộc cạnh BC, gọi E và F theo thứ tự là hình chiếu của M trên AB và AC. Chứng minh rằng khi M

Toán Lớp 8: Cho tam giác ABC vuông cân tại A. Điểm M thuộc cạnh BC, gọi E và F theo thứ tự là hình chiếu của M trên AB và AC. Chứng minh rằng khi M chuyển động trên cạnh BC thì:
1. Chu vi tứ giác MEAF không đổi
2. Đường thẳng đi qua M và vuông góc với EF luôn luôn đi qua một điểm K cố định.
3. Tam giác KEF có diện tích nhỏ nhất khi M là trung điểm của BC.

Comments ( 1 )

  1. 2. Gọi k là giao điểm của HM và đường thẳng vuông góc với AC tại C suy ra CK = CA suy ra K là điểm cố định thỏa mãn đề bài .
    Thật vậy, kéo dài tia EM cắt CK tại G, ta chứng minh được CG = EA. Tam giác KGM bằng tam giác EMF suy ra KG = EM = EB. Vậy
    CK = EA + EB = AB = AC

    toan-lop-8-cho-tam-giac-abc-vuong-can-tai-a-diem-m-thuoc-canh-bc-goi-e-va-f-theo-thu-tu-la-hinh

Leave a reply

222-9+11+12:2*14+14 = ? ( )