Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: bài 1 thực hiện phép tính sau b, (2x-1)(3x+2)(3-x) c, (x+3)(x62+3x-5) d, (d+1)(x^2-x+1) e, (2x^3-3x-1)(5x+2) f, (x^2-2x+3)(x-4) bài 2

Toán Lớp 8: bài 1 thực hiện phép tính sau
b, (2x-1)(3x+2)(3-x)
c, (x+3)(x62+3x-5)
d, (d+1)(x^2-x+1)
e, (2x^3-3x-1)(5x+2)
f, (x^2-2x+3)(x-4)
bài 2 thực hiện phép tính sau
b, (x-2y)x^2y^2-xy+2y)
c, 2/5xy(x^2y-5x+10y)
d, 2/3x^2y.(3xy-x^2+y)
e, (x-y)(x^2+xy+y^2)
f, (1/2xy-1).(x^3-2x-6)
bài 3 chứng minh đẳng thức sau
b, (x+Y)(x^4-x^3y+x^2y^2-xy^3+y^4)=x^5+y^5
c, (a+b)(a^3-a^2b+ab^2-b^3)=a^4-b^4
d, (a+b)(a^2-ab+b^2)=a^3+b^3

Comments ( 1 )

  1. Bài 1:
    \(\begin{array}{l}b)(2x-1)(3x+2)(3-x)\\=(6x^2+4x-3x-2)(3-x)\\=(6x^2+x-2)(3-x)\\=18x^2-6x^3+3x-x^2-6+2x\\=-6x^3+17x^2+5x-6\end{array}\) 
    \(\begin{array}{l}c)(x+3)(x62+3x-5)\\=(x+3)(65x-5)\\=65x^2+195x-5x-15\\=65x^2+190x-15\end{array}\) 
    $d)(d+1)(x^2-x+1)=dx^2-dx+d+x^2-x+1$
    \(\begin{array}{l}e)(x^3-3x-1)(5x+2)\\=10x^4+4x^3-15x^2-6x-5x-2\\=10x^4+4x^3-15x^2-11x-2\end{array}\) 
    \(\begin{array}{l}f)(x^2-2x+3)(x-4)\\=x^3-4x^2-2x^2+8x+3x-12\\=x^3-6x^2+11x-12\end{array}\) 
    Bài 2:
    $b) (x-2y)(x^2y^2-xy+2y)=x^3y^2-x^2y+2xy-2x^2y^3+2xy^2-4y^2$
    $c) \dfrac{2}{5xy}(x^2y-5x+10y)=\dfrac{2x}{5}-\dfrac{2}{y}+\dfrac{4}{x}$ 
    $d) \dfrac{2}{3x^2y}(3xy-x^2+y)=\dfrac{2}{x}-\dfrac{2}{3y}+\dfrac{2}{3x^2}$ 
    $e) (x-y)(x^2+xy+y^2)=x^3-y^3$ 
    $f) (\dfrac{1}{2xy}-1)(x^3-2x-6)=\dfrac{x^2}{2y}-\dfrac{1}{y}-\dfrac{3}{xy}$ 
    Bài 3:
    $b) VT=(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)$
    $=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5$
    $=x^5+y^5$
    $=VP$ 
    Vậy $(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)=x^5+y^5$
    $c) VT=(a+b)(a^3-a^2b+ab^2-b^3)$
    $=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4$
    $=a^4-b^4$
    $=VP$
    Vậy $(a+b)(a^3-a^2b+ab^2-b^3)=a^4-b^4$
    $d) VT=(a+b)(a^2-ab+b^2)$
    $=a^3-a^2b+ab^2+a^2b-ab^2+b^3$
    $=a^3+b^3$
    $=VP$
    Vậy $(a+b)(a^2-ab+b^2)=a^3+b^3$

Leave a reply

222-9+11+12:2*14+14 = ? ( )