Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Bài 1. Chứng minh rằng a + b^ +92 ab+3a+3b

Toán Lớp 8: Bài 1. Chứng minh rằng a + b^ +92 ab+3a+3b

Comments ( 2 )

  1. Giải đáp:
    $\begin{array}{l}
    S = {a^2} + {b^2} + 9 – \left( {ab + 3a + 3b} \right)\\
     \Leftrightarrow 2S = 2{a^2} + 2{b^2} + 18 – 2ab – 6a – 6b\\
     = \left( {{a^2} – 2ab + {b^2}} \right) + \left( {{a^2} – 6a + 9} \right) + \left( {{b^2} – 6b + 9} \right)\\
     = {\left( {a – b} \right)^2} + {\left( {a – 3} \right)^2} + {\left( {b – 3} \right)^2} \ge 0\\
     \Leftrightarrow 2S \ge 0\\
     \Leftrightarrow S \ge 0\\
     \Leftrightarrow {a^2} + {b^2} + 9 – \left( {ab + 3a + 3b} \right) \ge 0\\
     \Leftrightarrow {a^2} + {b^2} + 9 \ge ab + 3a + 3b
    \end{array}$

  2. $\\$
    Đặt A=a^2 + b^2 + 9 -ab – 3a – 3b
    ->2A  =2 (a^2 + b^2 + 9 – ab -3a – 3b)
    ->2A = 2a^2 +2b^2 + 18 – 2ab – 6a – 6b
    ->2A = (a^2 – 2ab + b^2) + (a^2 – 6a + 9)+(b^2 – 6b + 9)
    ->2A = (a-b)^2 + (a^2 – 2 . a . 3 +3^2)+(b^2 – 2 . b . 3 +3^2)
    ->2A=(a-b)^2 +(a-3)^2 + (b-3)^2
    Vì (a-b)^2 ≥0, (a-3)^2 ≥ 0, (b-3)^2 ≥ 0 với mọi a,b
    -> (a-b)^2 + (a-3)^2 + (b-3)^2 ≥ 0 với mọi a,b
    -> 2A ≥ 0 với mọi a,b
    ->A≥ 0 với mọi a,b
    -> a^2 + b^2 + 9 – ab – 3a – 3b ≥ 0
    -> a^2 + b^2 + 9 – (ab+3a+3b) ≥ 0
    ->a^2 + b^2 + 9 ≥ ab +3a+3b (đpcm)
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Hòa Tâm