Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: B1: giải các pt sau: a,(3x+1)^2-(2x-5)^2=0 b,(x+6)(3x+1)+x^2-36=0 c,(x+3)(4-3x)=x^2+6x+9 d,(4x+3)^2-4(x-1)^2=0 e,(x+5)^2(3x+2)^2=x^2(x+

Toán Lớp 8: B1: giải các pt sau:
a,(3x+1)^2-(2x-5)^2=0
b,(x+6)(3x+1)+x^2-36=0
c,(x+3)(4-3x)=x^2+6x+9
d,(4x+3)^2-4(x-1)^2=0
e,(x+5)^2(3x+2)^2=x^2(x+5)^2
f,(2x-1)(x-3)^2=(2x+1)(2x-1)^2
làm hộ mik vs ,mik cần gấp!!

Comments ( 2 )

  1.  a)
    (3x+1)^2-(2x-5)^2=0
    ⇔(3x+1-2x+5)(3x+1+2x-5)=0
    ⇔(x+6)(5x-4)=0
    1)x+6=0⇔x=-6
    2)5x-4=0⇔x=4/5
    Vậy S={-6;4/5}
    b)
    (x+6)(3x+1)+x^2-36=0
    ⇔(x+6)(3x+1)+(x^2-6^2)=0
    ⇔(x+6)(3x+1)+(x-6)(x+6)=0
    ⇔(x+6)(3x+1+x-6)=0
    ⇔(x+6)(4x-5)=0
    1)x+6=0⇔x=-6
    2)4x-5=0⇔x=5/4
    Vậy S={-6;5/4}
    c)
    (x+3)(4-3x)=x^2+6x+9
    ⇔(x+3)(4-3x)=(x+3)^2
    ⇔(x+3)(4-3x)-(x+3)^2=0
    ⇔(x+3)(4-3x-x-3)=0
    ⇔(x+3)(-4x+1)=0
    1)x+3=0⇔x=-3
    2)-4x+1=0⇔x=1/4
    Vậy S={-3;1/4}
    d)(4x+3)^2-4(x-1)^2=0
    ⇔(4x+3)^2-[2(x-1)]^2=0
    ⇔[4x+3-2(x-1)].[4x+3+2(x-1)]=0
    ⇔(4x+3-2x+2)(4x+3+2x-2)=0
    ⇔(2x+5)(6x+1)=0
    1)2x+5=0⇔x=-5/2
    2)6x+1=0⇔x=-1/6
    Vậy S={-5/2;-1/6}
    e)(x+5)^2(3x+2)^2=x^2(x+5)^2
    ⇔(x+5)^2(3x+2)^2-x^2(x+5)^2=0
    ⇔(x+5)^2[(3x+2)^2-x^2]=0
    ⇔(x+5)^2(3x+2-x)(3x+2+x)=0
    ⇔(x+5)^2(2x+2)(4x+2)=0
    1)(x+5)^2=0⇔x+5=0⇔x=-5
    2)2x+2=0⇔x=-1
    3)4x+2=0⇔x=-1/2
    Vậy S={-5;-1;-1/2}
    f)(2x-1)(x-3)^2=(2x+1)(2x-1)^2
    ⇔(2x-1)(x-3)^2-(2x+1)(2x-1)^2=0
    ⇔(2x-1)[(x-3)^2-(2x+1)(2x-1)]=0
    ⇔(2x-1)(x^2-6x+9-4x^2+1)=0
    ⇔(2x-1)(-3x^2-6x+10)=0
    1)2x-1=0⇔x=1/2
    2)-3x^2-6x+10=0⇔x=+-$\dfrac{\sqrt[]{39} }{3}$-1 
    Vậy S={1/2; +-$\dfrac{\sqrt[]{39} }{3}-1$}

  2. a)
    (3x+1)^2-(2x-5)^2=0
    <=>(3x+1-2x+5)(3x+1+2x-5)=0
    <=>(x+6)(5x-4)=0
    <=> \(\left[ \begin{array}{l}x+6=0\\5x-4=0\end{array} \right.\) <=> \(\left[ \begin{array}{l}x=-6\\x=\dfrac{4}{5}\end{array} \right.\) 
    Vậy phương trình có tập nghiệm là S={-6;4/5}
    $\\$
    b)
    (x+6)(3x+1)+x^2-36=0
    <=>(x+6)(3x+1)+(x-6)(x+6)=0
    <=>(x+6)(3x+1+x-6)=0
    <=>(x+6)(4x-5)=0
    <=> \(\left[ \begin{array}{l}x+6=0\\4x-5=0\end{array} \right.\) <=> \(\left[ \begin{array}{l}x=-6\\x=\dfrac{5}{4}\end{array} \right.\) 
    Vậy phương trình có tập nghiệm là S={-6;5/4}
    $\\$
    c)
    (x+3)(4-3x)=x^2+6x+9
    <=>(x+3)(4-3x)=(x+3)^2
    <=>(x+3)(4-3x)-(x+3)^2=0
    <=>(x+3)(4-3x-x-3)=0
    <=>(x+3)(1-4x)=0
    <=> \(\left[ \begin{array}{l}x+3=0\\1-4x=0\end{array} \right.\) <=> \(\left[ \begin{array}{l}x=-3\\x=\dfrac{1}{4}\end{array} \right.\) 
    Vậy phương trình có tập nghiệm là S={-3;1/4}
    $\\$
    d)
    (4x+3)^2-4(x-1)^2=0
    <=>(4x+3)^2-[2(x-1)]^2=0
    <=>(4x+3)^2-(2x-2)^2=0
    <=>(4x+3-2x+2)(4x+3+2x-2)=0
    <=>(2x+5)(6x+1)=0
    <=> \(\left[ \begin{array}{l}2x+5=0\\6x+1=0\end{array} \right.\) <=> \(\left[ \begin{array}{l}x=-\dfrac{5}{2}\\x=-\dfrac{1}{6}\end{array} \right.\) 
    Vậy phương trình có tập nghiệm là S={-5/2;-1/6}
    $\\$
    e)
    (x+5)^2(3x+2)^2=x^2(x+5)^2
    <=>[(x+5)(3x+2)]^2=[x(x+5)]^2
    <=>(3x^2+17x+10)^2=(x^2+5x)^2
    <=>(3x^2+17x+10-x^2-5x)(3x^2+17x+10+x^2+5x)=0
    <=>(2x^2+12x+10)(4x^2+22x+10)=0
    <=>[2(x+1)(x+5)].[2(2x+1)(x+5)]=0
    <=>(x+1)(x+5)^2(2x+1)=0
    <=> \(\left[ \begin{array}{l}x+1=0\\(x+5)^2=0\\2x+1=0\end{array} \right.\) <=> \(\left[ \begin{array}{l}x=-1\\x=-5\\x=-\dfrac{1}{2}\end{array} \right.\) 
    Vậy phương trình có tập nghiệm là S={-1;-5;-1/2}
    $\\$
    f)
    (2x-1)(x-3)^2=(2x+1)(2x-1)^2
    <=>(2x-1)(x-3)^2-(2x+1)(2x-1)^2=0
    <=>(2x-1)[(x-3)^2-(2x+1)(2x-1)]=0
    <=>(2x-1)(x^2-6x+9-4x^2+1)=0
    <=>(2x-1)(-3x^2-6x+10)=0
    <=> \(\left[ \begin{array}{l}2x-1=0\\-3x^2-6x+10=0\end{array} \right.\) <=> \(\left[ \begin{array}{l}x=\dfrac{1}{2}\\x=-1-\dfrac{1}{3}\sqrt{39}\\x=-1+\dfrac{1}{3}\sqrt{39}\end{array} \right.\) 
    Vậy phương trình có tập nghiệm S={1/2;-1+-\sqrt{39}}
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )