Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: 7*sin(a)^2 + 5*cos(a)^2 = 13 /2

Toán Lớp 8: 7*sin(a)^2 + 5*cos(a)^2 = 13 /2

Comments ( 1 )

  1. 7\sin(a)^2+5\cos(a)^2=13/2
    <=> 7\sin(a)^2+5[1-\sin(a)^2]=13/2
    <=> 7\sin(a)^2+5-5\sin(a)^2=13/2
    <=> 2\sin(a)^2+5=13/2
    <=> 2\sin(a)^2=13/2-5
    <=> 2\sin(a)^2=3/2
    <=> \sin(a)^2=3/4
    <=> \sin(a)=+-(\sqrt{3})/4
    <=>\(\left[ \begin{array}{l}\sin(a)=-\dfrac{\sqrt{3}}{2}\\\sin(a)=\dfrac{\sqrt{3}}{2}\end{array} \right.\) 
    <=>\(\left[ \begin{array}{l}\begin{cases}a=\dfrac{5\pi}{3}+2k\pi\\a=\dfrac{4\pi}{3}+2k\pi\end{cases}\\\begin{cases}a=\dfrac{\pi}{3}+2k\pi\\a=\dfrac{2\pi}{3}+2k\pi\end{cases}\end{array} \right.\) 
    <=>\(\left[ \begin{array}{l}a=\dfrac{\pi}{3}+k\pi\\a=\dfrac{2\pi}{3}+k\pi\end{array} \right. k\in\mathbb{Z}\) 
    <=>\(a=\begin{cases}\dfrac{\pi}{3}+k\pi\\\dfrac{2\pi}{3}+k\pi\end{cases}, k\in\mathbb{Z}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Nhiên