Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 6: $\text{Cho S=}$$1-2+2^2-2^3+-+2^{2002}$.$\text{Tính 3S}$$-$$2^{2003}$

Toán Lớp 6: $\text{Cho S=}$$1-2+2^2-2^3+….+2^{2002}$.$\text{Tính 3S}$$-$$2^{2003}$

Comments ( 2 )

  1. Giải đáp:
    $\\$
    S = 1 – 2 + 2^2 – 2^3  + … + 2^{2002}
    ↔ 2S = 2 (1 – 2 + 2^2 – 2^3 + … + 2^{2002})
    ↔2S = 2 – 2^2 + 2^3 – 2^4 + … + 2^{2003}
    Đem 2S + S ta được :
    ↔ 2S + S = (2 – 2^2 + 2^3 – 2^4 + … + 2^{2003}) + (1 – 2 + 2^2 – 2^3  + … + 2^{2002})
    ↔ (2+1)S= 1 + 2^{2003}
    ↔ 3S = 1 + 2^{2003}
    Có : 3S – 2^{2003}
    Thay 3S = 1 + 2^{2003} vào ta được :
    = (1+ 2^{2003}) – 2^{2003}
    = 1 + 2^{2003} – 2^{2003}
    = 1 + (2^{2003} – 2^{2003})
    = 1
    Vậy 3S – 2^{2003} = 1 khi S = 1 – 2 + 2^2 – 2^3 + … + 2^{2002}

  2. Giải đáp+Lời giải và giải thích chi tiết:
       S=1-2+2^2-2^3+…..+2^{2002}
    ⇒2S=2-2^2+2^3-2^4+….+2^{2003}
    ⇒2S+S=(2-2^2+2^3-2^4+….+2^{2003})+(1-2+2^2-2^3+…..+2^{2002})
    ⇒3S=2^{2003}+1
    ⇒3S-2^{2003}=2^{2003}+1-2^{2003}
                           =1
    Vậy 3S-2^{2003}=1
    ___________________________
    Chúc bạn học tốt!!!
    #Rùa~ ~ ~

Leave a reply

222-9+11+12:2*14+14 = ? ( )