Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: y= 3-8sin ²xcos ²x .Tìm max-min

Toán Lớp 11: y= 3-8sin ²xcos ²x .Tìm max-min

Comments ( 2 )

  1. ~rai~
    \(y=3-8\sin^2x\cos^2x\\\quad=3-2.(4\sin^2\cos^2x)\\\quad=3-2\sin^22x.\\\text{Ta có:}0\le\sin^22x\le 1\\\Leftrightarrow -2\le-2\sin^22x\le 0\\\Leftrightarrow 1\le 3-2\sin^22x\le 3\\\Leftrightarrow 1\le y\le 3.\\+)Min_y=1\Leftrightarrow \sin^22x=1\\\Leftrightarrow \cos^22x=0\\\Leftrightarrow \cos2x=0\\\Leftrightarrow 2x=\dfrac{\pi}{2}+k\pi\\\Leftrightarrow x=\dfrac{\pi}{4}+k\dfrac{\pi}{2}.(k\in\mathbb{Z})\\+)Max_y=3\Leftrightarrow \sin^22x=0\\\Leftrightarrow \sin2x=0\\\Leftrightarrow 2x=k\pi\\\Leftrightarrow x=k\dfrac{\pi}{2}.(k\in\mathbb{Z})\\\text{Vậy Min}_y=1\text{ khi x=}\dfrac{\pi}{4}+k\dfrac{\pi}{2};\\\text{Max}_y=3\text{ khi x=}k\dfrac{\pi}{2}.(k\in\mathbb{Z})\)

  2. Giải đáp:
    $\begin{cases}\min y = 1 \Leftrightarrow x =  \dfrac{\pi}{4} + k\dfrac{\pi}{2}\\\max y = 3\Leftrightarrow x = k\dfrac{\pi}{2}\end{cases}\quad (k\in\Bbb Z)$
    Lời giải và giải thích chi tiết:
    $\quad y = 3 – 8\sin^2x\cos^2x$
    $\Leftrightarrow y = 3 – 2\sin^22x$
    $\Leftrightarrow y = 3 – (1-\cos4x)$
    $\Leftrightarrow y = 2 + \cos4x$
    Ta có:
    $\quad -1\leqslant \cos4x \leqslant 1$
    $\Leftrightarrow 1 \leqslant 2 +\cos4x \leqslant 3$
    $\Leftrightarrow 1 \leqslant y \leqslant 3$
    Do đó:
    $+)\quad \min y = 1$
    $\Leftrightarrow \cos4x = -1$
    $\Leftrightarrow 4x = \pi + k2\pi$
    $\Leftrightarrow x =\dfrac{\pi}{4} + k\dfrac{\pi}{2}\quad (k\in\Bbb Z)$
    $+)\quad \max y = 3$
    $\Leftrightarrow \cos4x = 1$
    $\Leftrightarrow 4x = k2\pi$
    $\Leftrightarrow x =k\dfrac{\pi}{2}\quad (k\in\Bbb Z)$
    Vậy $\begin{cases}\min y = 1 \Leftrightarrow x =  \dfrac{\pi}{4} + k\dfrac{\pi}{2}\\\max y = 3\Leftrightarrow x = k\dfrac{\pi}{2}\end{cases}\quad (k\in\Bbb Z)$

Leave a reply

222-9+11+12:2*14+14 = ? ( )