Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: tìm max min y= sinx (2x-pi:4)+5

Toán Lớp 11: tìm max min y= sinx (2x-pi:4)+5

Comments ( 2 )

  1. $\begin{array}{l} – 1 \le \sin \left( {x + \dfrac{\pi }{4}} \right) \le 1\\ \Leftrightarrow – 2 \le 2\sin \left( {x + \dfrac{\pi }{4}} \right) \le 2\\ \Leftrightarrow – 2 + 1 \le 2\sin \left( {x + \dfrac{\pi }{4}} \right) + 1 \le 2 + 1\\ \Leftrightarrow – 1 \le 2\sin \left( {x + \dfrac{\pi }{4}} \right) + 1 \le 3\\ \Rightarrow Min\,y = – 1 \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = – 1\\ \Leftrightarrow x + \dfrac{\pi }{4} = \dfrac{{ – \pi }}{2} + k2\pi \Leftrightarrow \dfrac{{ – 3\pi }}{4} + k2\pi \\ Max\,\,y = 3 \Leftrightarrow \,\,\sin \left( {x + \dfrac{\pi }{4}} \right) = 1\\ \Leftrightarrow x + \dfrac{\pi }{4} = \dfrac{\pi }{2} + k2\pi \Leftrightarrow \dfrac{\pi }{4} + k2\pi \end{array}$
     

  2. ~rai~
    \(y=\sin\left(2x-\dfrac{\pi}{4}\right)+5\\\text{Ta có:}-1\le\sin\left(2x-\dfrac{\pi}{4}\right)\le 1\\\Leftrightarrow 4\le\sin\left(2x-\dfrac{\pi}{4}\right)\le 9\\\Leftrightarrow 4\le y\le 9.\\+)Min_y=4\Leftrightarrow \sin\left(2x-\dfrac{\pi}{4}\right)=-1\\\Leftrightarrow 2x-\dfrac{\pi}{4}=-\dfrac{\pi}{2}+k2\pi\\\Leftrightarrow 2x=-\dfrac{\pi}{4}+k2\pi\\\Leftrightarrow x=-\dfrac{\pi}{8}+k\pi.(k\in\mathbb{Z})\\+)Max_y=9\Leftrightarrow \sin\left(2x-\dfrac{\pi}{4}\right)=1\\\Leftrightarrow 2x-\dfrac{\pi}{4}=\dfrac{\pi}{2}+k2\pi\\\Leftrightarrow 2x=\dfrac{3\pi}{4}+k2\pi\\\Leftrightarrow x=\dfrac{3\pi}{8}+k\pi.(k\in\mathbb{Z})\\\text{Vậy Min}_y=4\text{ khi }x=-\dfrac{\pi}{8}+k\pi;\\\text{Max}_y=9\text{ khi }x=\dfrac{3\pi}{8}+k\pi.(k\in\mathbb{Z})\)
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Khanh