Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: tìm GTLN GTNN CỦA HÀM SỐ y=cosx +cos(x-pi/2)

Toán Lớp 11: tìm GTLN GTNN CỦA HÀM SỐ y=cosx +cos(x-pi/2)

Comments ( 2 )

  1. ~rai~
    \(y=\cos x+\cos\left(x-\dfrac{\pi}{2}\right)\\\quad=\cos x+\cos\left[-\left(\dfrac{\pi}{2}-x\right)\right]\\\quad=\cos x+\cos\left(\dfrac{\pi}{2}-x\right)\\\quad=\cos x+\sin x\\\quad=\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right).\\\text{Ta có:}-1\le\sin\left(x+\dfrac{\pi}{4}\right)\le 1\\\Leftrightarrow -\sqrt{2}\le \sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right)\le\sqrt{2}\\\Leftrightarrow -\sqrt{2}\le y\le\sqrt{2}.\\+)Min_y=-\sqrt{2}\\\Leftrightarrow \sin\left(x+\dfrac{\pi}{4}\right)=-1\\\Leftrightarrow x+\dfrac{\pi}{4}=-\dfrac{\pi}{2}+k2\pi\\\Leftrightarrow x=-\dfrac{3\pi}{4}+k2\pi.(k\in\mathbb{Z})\\+)Max_y=\sqrt{2}\\\Leftrightarrow \sin\left(x+\dfrac{\pi}{4}\right)=1\\\Leftrightarrow x+\dfrac{\pi}{4}=\dfrac{\pi}{2}+k2\pi\\\Leftrightarrow x=\dfrac{\pi}{4}+k2\pi.(k\in\mathbb{Z})\\\text{Vậy }Min_y=-\sqrt{2}\text{ khi x=}-\dfrac{3\pi}{4}+k2\pi;\\Max_y=\sqrt{2}\text{ khi x=}\dfrac{\pi}{4}+k2\pi.(k\in\mathbb{Z})\)

  2. Giải đáp:
    \(\begin{cases}
    \min y = -\sqrt2 \Leftrightarrow x = \dfrac{5\pi}{4} + k2\pi\\
    \max y = \sqrt2\ \ \Leftrightarrow x = \dfrac{\pi}{4} + k2\pi
    \end{cases}\quad (k\in\Bbb Z)\)
    Lời giải và giải thích chi tiết:
    \(\begin{array}{l}
    \quad y = \cos x + \cos\left(x – \dfrac{\pi}{2}\right)\\
    \Leftrightarrow y = \cos x + \sin x\\
    \Leftrightarrow y = \sqrt2\cos\left(x – \dfrac{\pi}{4}\right)\\
    \text{Ta có:}\\
    \quad -1 \leqslant \cos\left(x – \dfrac{\pi}{4}\right) \leqslant 1\\
    \Leftrightarrow -\sqrt2\leqslant \sqrt2\cos\left(x – \dfrac{\pi}{4}\right) \leqslant \sqrt2\\
    \Leftrightarrow -\sqrt2 \leqslant y \leqslant \sqrt2\\
    \text{Do đó:}\\
    +)\quad \min y = -\sqrt2\\
    \Leftrightarrow \cos\left(x – \dfrac{\pi}{4}\right) = -1\\
    \Leftrightarrow x – \dfrac{\pi}{4} = \pi + k2\pi\\
    \Leftrightarrow x = \dfrac{5\pi}{4} + k2\pi\quad (k\in\Bbb Z)\\
    +)\quad \max y = \sqrt2 \\
    \Leftrightarrow \cos\left(x – \dfrac{\pi}{4}\right) = 1\\
    \Leftrightarrow x  – \dfrac{\pi}{4} = k2\pi\\
    \Leftrightarrow x = \dfrac{\pi}{4} + k2\pi\quad (k\in\Bbb Z)\\
    \text{Vậy}\ \min y = -\sqrt2 \Leftrightarrow x = \dfrac{5\pi}{4} + k2\pi\\
    \max y = \sqrt2 \Leftrightarrow x = \dfrac{\pi}{4} + k2\pi\quad (k\in\Bbb Z)
    \end{array}\) 

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Lan Anh