Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: sin2x + cosx =( 2sinx +1)( 3cosx -1) ????

Toán Lớp 11: sin2x + cosx =( 2sinx +1)( 3cosx -1)
????

Comments ( 2 )

  1. Giải đáp:
    $S=\left\{-\dfrac{\pi}{6}+k2\pi;\dfrac{7\pi}{6}+k2\pi;\dfrac{\pi}{3}+k2\pi;-\dfrac{\pi}{3}+k2\pi\,\bigg{|}\,k\in\mathbb Z\right\}$
    Lời giải và giải thích chi tiết:
    $\sin2x+\cos x=(2\sin x+1)(3\cos x-1)$
    $⇔2\sin x\cos x+\cos x=(2\sin x+1)(3\cos x-1)$
    $⇔\cos x(2\sin x+1)=(2\sin x+1)(3\cos x-1)$
    $⇔(2\sin x+1)(2\cos x-1)=0$
    $⇔\left[ \begin{array}{l}2\sin x+1=0\\2\cos x-1=0\end{array} \right.⇔\left[ \begin{array}{l}\sin x=-\dfrac{1}{2}\\\cos x=\dfrac{1}{2}\end{array} \right.$
    $⇔\left[ \begin{array}{l}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\\x=\dfrac{\pi}{3}+k2\pi\\x=-\dfrac{\pi}{3}+k2\pi\end{array} \right.\,\,(k\in\mathbb Z)$
    Vậy $S=\left\{-\dfrac{\pi}{6}+k2\pi;\dfrac{7\pi}{6}+k2\pi;\dfrac{\pi}{3}+k2\pi;-\dfrac{\pi}{3}+k2\pi\,\bigg{|}\,k\in\mathbb Z\right\}$.

  2. sin2x+cosx=(2sinx+1)(3cosx-1)$\\$<=>2sinxcosx+cosx=(2sinx+1)(3cosx-1)$\\$<=>cosx(2sinx+1)=(2sinx+1)(3cosx-1)$\\$<=>(2sinx+1)(cosx-3cosx+1)=0$\\$<=>(2sinx+1)(1-2cosx)=0$\\$<=>\(\left[ \begin{array}{l}\sin(x)=\dfrac{-1}{2}\\\cos(x)=\dfrac{1}{2}\end{array} \right.\)
    Tự tính nốt

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Kỳ Anh