Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giải pt a)sinx-căn3 cosx=2sin3x b)cos2x+căn3 sin2x-2cosx=0

Toán Lớp 11: Giải pt
a)sinx-căn3 cosx=2sin3x
b)cos2x+căn3 sin2x-2cosx=0

Comments ( 2 )

  1. Giải đáp:
    \(\begin{array}{l}
    a)\quad S =\left\{-\dfrac{\pi}{6} + k\pi;\ \dfrac{\pi}{3} + k\dfrac{\pi}{2}\ \Bigg|\ k\in\Bbb Z\right\}\\
    b)\quad S =\left\{- \dfrac{\pi}{3}  +k2\pi;\ – \dfrac{\pi}{9} + k\dfrac{2\pi}{3}\ \Bigg|\ k\in\Bbb Z\right\}
    \end{array}\) 
    Lời giải và giải thích chi tiết:
    \(\begin{array}{l}
    a)\quad \sin x – \sqrt3\cos x =2\sin3x\\
    \Leftrightarrow \dfrac12\sin x – \dfrac{\sqrt3}{2}\cos x = \sin3x\\
    \Leftrightarrow \sin\left(x – \dfrac{\pi}{3}\right) = \sin3x\\
    \Leftrightarrow \left[\begin{array}{l}x – \dfrac{\pi}{3} = 3x + k2\pi\\x – \dfrac{\pi}{3} = \pi – 3x + k2\pi\end{array}\right.\\
    \Leftrightarrow \left[\begin{array}{l}x =-\dfrac{\pi}{6} + k\pi\\x = \dfrac{\pi}{3} + k\dfrac{\pi}{2}\end{array}\right.\quad (k\in\Bbb Z)\\
    \text{Vậy}\ S =\left\{-\dfrac{\pi}{6} + k\pi;\ \dfrac{\pi}{3} + k\dfrac{\pi}{2}\ \Bigg|\ k\in\Bbb Z\right\}\\
    b)\quad \cos2x – \sqrt3\sin2x – 2\cos x = 0\\
    \Leftrightarrow \dfrac12\cos2x- \dfrac{\sqrt3}{2}\sin2x = \cos x\\
    \Leftrightarrow \cos\left(2x + \dfrac{\pi}{3}\right) =\cos x \\
    \Leftrightarrow \left[\begin{array}{l}2x + \dfrac{\pi}{3} = x + k2\pi\\2x + \dfrac{\pi}{3} = -x + k2\pi\end{array}\right.\\
    \Leftrightarrow \left[\begin{array}{l}x = – \dfrac{\pi}{3}  +k2\pi\\x = – \dfrac{\pi}{9} + k\dfrac{2\pi}{3}\end{array}\right.\quad (k\in\Bbb Z)\\
    \text{Vậy}\ S =\left\{- \dfrac{\pi}{3}  +k2\pi;\ – \dfrac{\pi}{9} + k\dfrac{2\pi}{3}\ \Bigg|\ k\in\Bbb Z\right\}
    \end{array}\) 

  2. a)sinx-\sqrt{3}cosx=2sin3x
    ->1/2 sinx -\sqrt{3}/2 cosx=sin2x
    ->sin(x-\pi/3)=sin3x
    ->\(\left[ \begin{array}{l}x-\frac{\pi}{3}=3x+k2\pi\\x-\frac{\pi}{3}=\pi-3x+k2\pi\end{array} \right.\) 
    ->\(\left[ \begin{array}{l}x=-\frac{\pi}{6}+k\pi\\x=\frac{\pi}{3}+k\frac{\pi}{2}\end{array} \right.\) 
    ->x=\pi/3+k \pi/2(k∈Z)
    b)cos2x+\sqrt{3}sin2x-2cosx=0
    ->1/2 cos2x-\sqrt{3}/2 sin2x-cosx=0
    ->cos \pi/3 cos2x-sin \pi/3 sin 2x = cosx
    ->cos(2x+\pi/3)=cosx
    ->\(\left[ \begin{array}{l}2x+\frac{\pi}{3}=x+k2\pi\\2x+\frac{\pi}{3}=-x+k2\pi\end{array} \right.\) 
    ->\(\left[ \begin{array}{l}x=-\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{9}+k\frac{2\pi}{3}\end{array} \right.\) (k∈Z)

Leave a reply

222-9+11+12:2*14+14 = ? ( )