Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giải hộ mình với 2cot(2x-15°)-√2=0

Toán Lớp 11: Giải hộ mình với
2cot(2x-15°)-√2=0

Comments ( 2 )

  1. Giải đáp:
    $S=\left\{\dfrac{1}{2}\arctan\sqrt 2+\dfrac{\pi}{24}+k\dfrac{\pi}{2}\,\bigg|\,k\in\mathbb Z\right\}$
    Lời giải và giải thích chi tiết:
    ĐKXĐ: $\sin(2x-15^o)\ne 0$
    $⇔2x-\dfrac{\pi}{12}\ne k\pi$
    $⇔x\ne \dfrac{\pi}{24}+k\dfrac{\pi}{2}\,\,(k\in\mathbb Z)$
    $2\cot(2x-\dfrac{\pi}{12})-\sqrt 2=0$
    $⇔\cot(2x-\dfrac{\pi}{12})=\dfrac{\sqrt 2}{2}$
    $⇔\tan(2x-\dfrac{\pi}{12})=\sqrt 2$
    $⇔2x-\dfrac{\pi}{12}=\arctan\sqrt 2+k\pi$
    $⇔2x=\arctan\sqrt 2+\dfrac{\pi}{12}+k\pi$
    $⇔x=\dfrac{1}{2}\arctan\sqrt 2+\dfrac{\pi}{24}+k\dfrac{\pi}{2}\,\,(k\in\mathbb Z)$
    Vậy $S=\left\{\dfrac{1}{2}\arctan\sqrt 2+\dfrac{\pi}{24}+k\dfrac{\pi}{2}\,\bigg|\,k\in\mathbb Z\right\}$.

  2. Giải đáp:
    \(S = \left\{\dfrac{\pi}{24} + \dfrac12\text{arccot}\left(\dfrac{\sqrt2}{2}\right) + \dfrac{k\pi}{2}\ \Bigg|\ k\in\Bbb Z\right\}\) 
    Lời giải và giải thích chi tiết:
    \(\begin{array}{l}
    \quad 2\cot(2x – 15^\circ) – \sqrt2 = 0\\
    \Leftrightarrow \cot\left(2x – \dfrac{\pi}{12}\right) = \dfrac{\sqrt2}{2}\qquad (*)\\
    ĐK: \sin\left(2x – \dfrac{\pi}{12}\right) \ne 0\\
    \Leftrightarrow 2x – \dfrac{\pi}{12} \ne n\pi\\
    \Leftrightarrow x \ne \dfrac{\pi}{24} + \dfrac{n\pi}{2}\quad (n\in \Bbb Z)\\
    \text{Khi đó:}\\
    (*) \Leftrightarrow 2x – \dfrac{\pi}{12} = \text{arccot}\left(\dfrac{\sqrt2}{2}\right) + k\pi\\
    \Leftrightarrow x = \dfrac{\pi}{24} + \dfrac12\text{arccot}\left(\dfrac{\sqrt2}{2}\right) + \dfrac{k\pi}{2}\quad (k\in\Bbb Z)\\
    \text{Vậy}\ S = \left\{\dfrac{\pi}{24} + \dfrac12\text{arccot}\left(\dfrac{\sqrt2}{2}\right) + \dfrac{k\pi}{2}\ \Bigg|\ k\in\Bbb Z\right\}
    \end{array}\) 

Leave a reply

222-9+11+12:2*14+14 = ? ( )