Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giải giúp mình hai câu này với 1/ Sinx + cosx = 2căn2sinxcosx. 2/ sin8x – cos6x = căn3(sin6x + cos8x).

Toán Lớp 11: Giải giúp mình hai câu này với
1/ Sinx + cosx = 2căn2sinxcosx.
2/ sin8x – cos6x = căn3(sin6x + cos8x).

Comments ( 1 )

  1. Giải đáp:
    \(\begin{array}{l}
    1,\\
    x = \dfrac{\pi }{4} + \dfrac{{k2\pi }}{3}\,\,\,\,\left( {k \in Z} \right)\\
    2,\\
    \left[ \begin{array}{l}
    x = \dfrac{\pi }{4} + k\pi \\
    x = \dfrac{\pi }{{12}} + \dfrac{{k\pi }}{7}
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)
    \end{array}\)
    Lời giải và giải thích chi tiết:
     Ta có:
    \(\begin{array}{l}
    1,\\
    \sin x + \cos x = 2\sqrt 2 \sin x.\cos x\\
     \Leftrightarrow \dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x = 2\sin x.\cos x\\
     \Leftrightarrow \sin x.\cos \dfrac{\pi }{4} + \cos x.\sin \dfrac{\pi }{4} = \sin 2x\\
     \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = 2x\\
     \Leftrightarrow \left[ \begin{array}{l}
    x + \dfrac{\pi }{4} = 2x + k2\pi \\
    x + \dfrac{\pi }{4} = \pi  – 2x + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x – 2x =  – \dfrac{\pi }{4} + k2\pi \\
    x + 2x = \pi  – \dfrac{\pi }{4} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
     – x =  – \dfrac{\pi }{4} + k2\pi \\
    3x = \dfrac{{3\pi }}{4} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{4} + k2\pi \\
    x = \dfrac{\pi }{4} + \dfrac{{k2\pi }}{3}
    \end{array} \right.\\
     \Leftrightarrow x = \dfrac{\pi }{4} + \dfrac{{k2\pi }}{3}\,\,\,\,\left( {k \in Z} \right)\\
    2,\\
    \sin 8x – \cos 6x = \sqrt 3 \left( {\sin 6x + \cos 8x} \right)\\
     \Leftrightarrow \sin 8x – \sqrt 3 \cos 8x = \sqrt 3 \sin 6x + \cos 6x\\
     \Leftrightarrow \dfrac{1}{2}\sin 8x – \dfrac{{\sqrt 3 }}{2}\cos 8x = \dfrac{{\sqrt 3 }}{2}\sin 6x + \dfrac{1}{2}\cos 6x\\
     \Leftrightarrow \sin 8x.\cos \dfrac{\pi }{3} – \cos 8x.\sin \dfrac{\pi }{3} = \sin 6x.\cos \dfrac{\pi }{6} + \cos 6x.\sin \dfrac{\pi }{6}\\
     \Leftrightarrow \sin \left( {8x – \dfrac{\pi }{3}} \right) = \sin \left( {6x + \dfrac{\pi }{6}} \right)\\
     \Leftrightarrow \left[ \begin{array}{l}
    8x – \dfrac{\pi }{3} = 6x + \dfrac{\pi }{6} + k2\pi \\
    8x – \dfrac{\pi }{3} = \pi  – 6x – \dfrac{\pi }{6} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    8x – 6x = \dfrac{\pi }{6} + \dfrac{\pi }{3} + k2\pi \\
    8x + 6x = \pi  – \dfrac{\pi }{6} + \dfrac{\pi }{3} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x = \dfrac{\pi }{2} + k2\pi \\
    14x = \dfrac{{7\pi }}{6} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{4} + k\pi \\
    x = \dfrac{\pi }{{12}} + \dfrac{{k\pi }}{7}
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Xuân