Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: giải giúp e với ạ cos^2x=3sin2x+3

Toán Lớp 11: giải giúp e với ạ
cos^2x=3sin2x+3

Comments ( 1 )

  1. Giải đáp:
    \(\left[ \begin{array}{l}
    x = \dfrac{1}{2}\arccos \dfrac{5}{{\sqrt {37} }} – \dfrac{1}{2}\arccos \dfrac{1}{{\sqrt {37} }} + k\pi \\
    x =  – \dfrac{1}{2}\arccos \dfrac{5}{{\sqrt {37} }} – \dfrac{1}{2}\arccos \dfrac{1}{{\sqrt {37} }} + k\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\)
    Lời giải và giải thích chi tiết:
     Ta có:
    \(\begin{array}{l}
    {\cos ^2}x = 3\sin 2x + 3\\
     \Leftrightarrow 2{\cos ^2}x = 6\sin 2x + 6\\
     \Leftrightarrow 2{\cos ^2}x – 1 = 6\sin 2x + 5\\
     \Leftrightarrow \cos 2x = 6\sin 2x + 5\\
     \Leftrightarrow \cos 2x – 6\sin 2x = 5\\
     \Leftrightarrow \dfrac{1}{{\sqrt {37} }}.\cos 2x – \dfrac{6}{{\sqrt {37} }}.\sin 2x = \dfrac{5}{{\sqrt {37} }}\\
     \Leftrightarrow \cos 2x.\cos \alpha  – \sin 2x.\sin \alpha  = \dfrac{5}{{\sqrt {37} }}\\
    \left( {\cos \alpha  = \dfrac{1}{{\sqrt {37} }};\sin \alpha  = \dfrac{6}{{\sqrt {37} }}} \right)\\
     \Leftrightarrow \cos \left( {2x + \alpha } \right) = \dfrac{5}{{\sqrt {37} }}\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x + \alpha  = \arccos \dfrac{5}{{\sqrt {37} }} + k2\pi \\
    2x + \alpha  =  – \arccos \dfrac{5}{{\sqrt {57} }} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x = \arccos \dfrac{5}{{\sqrt {37} }} – \alpha  + k2\pi \\
    2x =  – \arccos \dfrac{5}{{\sqrt {37} }} – \alpha  + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{1}{2}\arccos \dfrac{5}{{\sqrt {37} }} – \dfrac{1}{2}\alpha  + k\pi \\
    x =  – \dfrac{1}{2}\arccos \dfrac{5}{{\sqrt {37} }} – \dfrac{1}{2}\alpha  + k\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{1}{2}\arccos \dfrac{5}{{\sqrt {37} }} – \dfrac{1}{2}\arccos \dfrac{1}{{\sqrt {37} }} + k\pi \\
    x =  – \dfrac{1}{2}\arccos \dfrac{5}{{\sqrt {37} }} – \dfrac{1}{2}\arccos \dfrac{1}{{\sqrt {37} }} + k\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )