Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giải các phương trình sau: a) 2sin3x -1=0 b) 2sin(2x-π/4)-1=0 c) 2cos(2x-π/4)-1=0 d) 2tan(2x-π/4)-1=0 e) √3 cot(x-π/4)-1=0 ai giúp mìn

Toán Lớp 11: Giải các phương trình sau:
a) 2sin3x -1=0
b) 2sin(2x-π/4)-1=0
c) 2cos(2x-π/4)-1=0
d) 2tan(2x-π/4)-1=0
e) √3 cot(x-π/4)-1=0
ai giúp mình với ạ

Comments ( 1 )

  1. Giải đáp:
    \(\begin{array}{l}
    a,\\
    \left[ \begin{array}{l}
    x = \dfrac{\pi }{{18}} + \dfrac{{k2\pi }}{3}\\
    x = \dfrac{{5\pi }}{{18}} + \dfrac{{k2\pi }}{3}
    \end{array} \right.\,\,\,\,\,\left( {k \in Z} \right)\\
    b,\\
    \left[ \begin{array}{l}
    x = \dfrac{{5\pi }}{{24}} + k\pi \\
    x = \dfrac{{13\pi }}{{24}} + k\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
    c,\\
    \left[ \begin{array}{l}
    x = \dfrac{{7\pi }}{{24}} + k\pi \\
    x =  – \dfrac{\pi }{{24}} + k\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
    d,\\
    x = \dfrac{\pi }{8} + \dfrac{1}{2}\arctan \dfrac{1}{2} + \dfrac{{k\pi }}{2}\,\,\,\,\,\left( {k \in Z} \right)\\
    e,\\
    x = \dfrac{{7\pi }}{{12}} + k\pi \,\,\,\,\left( {k \in Z} \right)
    \end{array}\)
    Lời giải và giải thích chi tiết:
     Ta có:
    \(\begin{array}{l}
    a,\\
    2\sin 3x – 1 = 0\\
     \Leftrightarrow \sin 3x = \dfrac{1}{2}\\
     \Leftrightarrow \sin 3x = \sin \dfrac{\pi }{6}\\
     \Leftrightarrow \left[ \begin{array}{l}
    3x = \dfrac{\pi }{6} + k2\pi \\
    3x = \pi  – \dfrac{\pi }{6} + k2\pi 
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    3x = \dfrac{\pi }{6} + k2\pi \\
    3x = \dfrac{{5\pi }}{6} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{{18}} + \dfrac{{k2\pi }}{3}\\
    x = \dfrac{{5\pi }}{{18}} + \dfrac{{k2\pi }}{3}
    \end{array} \right.\,\,\,\,\,\left( {k \in Z} \right)\\
    b,\\
    2\sin \left( {2x – \dfrac{\pi }{4}} \right) – 1 = 0\\
     \Leftrightarrow \sin \left( {2x – \dfrac{\pi }{4}} \right) = \dfrac{1}{2}\\
     \Leftrightarrow \sin \left( {2x – \dfrac{\pi }{4}} \right) = \sin \dfrac{\pi }{6}\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x – \dfrac{\pi }{4} = \dfrac{\pi }{6} + k2\pi \\
    2x – \dfrac{\pi }{4} = \pi  – \dfrac{\pi }{6} + k2\pi 
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    2x – \dfrac{\pi }{4} = \dfrac{\pi }{6} + k2\pi \\
    2x – \dfrac{\pi }{4} = \dfrac{{5\pi }}{6} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x = \dfrac{{5\pi }}{{12}} + k2\pi \\
    2x = \dfrac{{13\pi }}{{12}} + k2\pi 
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{{5\pi }}{{24}} + k\pi \\
    x = \dfrac{{13\pi }}{{24}} + k\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
    c,\\
    2\cos \left( {2x – \dfrac{\pi }{4}} \right) – 1 = 0\\
     \Leftrightarrow \cos \left( {2x – \dfrac{\pi }{4}} \right) = \dfrac{1}{2}\\
     \Leftrightarrow \cos \left( {2x – \dfrac{\pi }{4}} \right) = \cos \dfrac{\pi }{3}\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x – \dfrac{\pi }{4} = \dfrac{\pi }{3} + k2\pi \\
    2x – \dfrac{\pi }{4} =  – \dfrac{\pi }{3} + k2\pi 
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    2x = \dfrac{{7\pi }}{{12}} + k2\pi \\
    2x =  – \dfrac{\pi }{{12}} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{{7\pi }}{{24}} + k\pi \\
    x =  – \dfrac{\pi }{{24}} + k\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
    d,\\
    DKXD:\,\,\,\cos \left( {2x – \dfrac{\pi }{4}} \right) \ne 0\\
     \Leftrightarrow 2x – \dfrac{\pi }{4} \ne \dfrac{\pi }{2} + k\pi  \Leftrightarrow x \ne \dfrac{{3\pi }}{8} + \dfrac{{k\pi }}{2}\,\,\,\,\left( {k \in Z} \right)\\
    2\tan \left( {2x – \dfrac{\pi }{4}} \right) – 1 = 0\\
     \Leftrightarrow \tan \left( {2x – \dfrac{\pi }{4}} \right) = \dfrac{1}{2}\\
     \Leftrightarrow 2x – \dfrac{\pi }{4} = \arctan \dfrac{1}{2} + k\pi \\
     \Leftrightarrow 2x = \dfrac{\pi }{4} + \arctan \dfrac{1}{2} + k\pi \\
     \Leftrightarrow x = \dfrac{\pi }{8} + \dfrac{1}{2}\arctan \dfrac{1}{2} + \dfrac{{k\pi }}{2}\,\,\,\,\,\left( {k \in Z} \right)\\
    e,\\
    DKXD:\,\,\sin \left( {x – \dfrac{\pi }{4}} \right) \ne 0 \Leftrightarrow x – \dfrac{\pi }{4} \ne k\pi  \Leftrightarrow x \ne \dfrac{\pi }{4} + k\pi \,\,\,\left( {k \in Z} \right)\\
    \sqrt 3 \cot \left( {x – \dfrac{\pi }{4}} \right) – 1 = 0\\
     \Leftrightarrow \cot \left( {x – \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 3 }}\\
     \Leftrightarrow x – \dfrac{\pi }{4} = \dfrac{\pi }{3} + k\pi \\
     \Leftrightarrow x = \dfrac{{7\pi }}{{12}} + k\pi \,\,\,\,\left( {k \in Z} \right)
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Lan Anh